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We consider a few cases of homogeneous and isotropic turbulence differing by the mechanisms of turbu-
lence generation. The advective terms in the Navier-Stokes and Burgers equations are similar. It is proposed
that the longitudinal structure functioi8s(r) in homogeneous and isotropic three-dimensional turbulence are
governed by a one-dimensionélD) equation of motion, resembling the 1D Burgers equation, with the
strongly nonlocal pressure contributions accounted for by Galilean invariance-breaking terms. The resulting
equations, not involving parameters taken from experimental data, give both scaling exponents and amplitudes
of the structure functions in an excellent agreement with experimental data. The derived probability density
function P(Au,r)#P(—Au,r), butP(Au,r)=P(—Au,—r), in accord with the symmetry properties of the
Navier-Stokes equations. With decrease of the displacemeiie probability density, which cannot be rep-
resented in a scale-invariant form, shows smooth variation from the Gaussian at the large scales to close-to-
exponential function, thus demonstrating onset of small-scale intermittency. It is shown that accounting for the
subdominant contributions to the structure functi®y ) «r¢n is crucial for a derivation of the amplitudes of
the moments of the velocity differende51063-651X98)10202-1

PACS numbds): 47.27—i

INTRODUCTION Galilean invariant dynamic equations, meaning that the inte-
gral scale and the random-force-induced single-paoinpi;
Intermittency of turbulence, not contained in the Kolmog- cannot enter the resulting expression for the probability den-
orov theory, is one of the most intriguing and mysterioussity having the scale-invariant form:
phenomena of continuum mechanics. Experimentally de-
tected in the early 1960s, this feature of high-Reynolds- P(U,r)gi F(E) (1)
number turbulent flows still remains a major challenge to r r

turbulence theory. Landau’s 1942 remdiK that the large- WhenU=u, Galilean invariancdGl), even of the small-

scale fluctuations of turbulence production in the energy<..ie dynamics can be violated, and the probability density

containing range can invalidate th? Kolmogprov ‘t‘heory Wz,iﬁunction (PDP scales withU/u,s, leading to saturation of
one of the mot|v_at|ons for co_nstrL_Jctlon of various casc_ade the scaling exponents, =1 for n>n.= 1. This general fea-
models attempting to explain this phenomenon, 'manlfested]re of Burgers turbulence was confirmed by numerical ex-
in the anomalous scaling of the structure functi®gr)  periments in which turbulence was generated by different
=([u(x+r)—u(x)]M=(UM=Aqrn, with the exponents random forces generating various scaling exponéptsn,
&,#n/3. The first model of this kind was proposed by Kol- [12-14. It was shown in Refd.12—14] that the value of the
mogorov himself in 19622]. Recently, some important ana- critical moment numben, depended on the forcing function
lytic advances, leading to evaluation of both scaling expospectrum. Still, an>n, all S,«r, indicating that decorrela-
nents¢, and the amplituded,,, were made for the problems tion introduced by the noise was too weak to prevent the
of the passive scalar, advected by a random velocity field anghock formation. Recently Chertkov, Kolokolov, and Ver-
the random-force-driven Burgers turbuler@-7]. First, it  gassold15] obtained a similar structure of the theory con-
was proposed by KraichndB] that scalar structure functions sidering a one-dimensional problem of a passive scalar ad-
([T(x)—T(x+r)]?") can be solutions of homogeneous dif- vected by a random velocity field. In the limit=0 their
ferential equations, thus leading to nontrivial values of thePDF
exponentsé,, which could not be found from dimensional
considerations. Then Gawedzki and Kupiaipéh Chertkov
et al. [5,6], and Shraiman and Siggi@] showed that, in- P(U'r)“?W’
deed, it was the zero modes which were responsible for the
anomalous scaling in some limiting cases of the passive scavhere, to simplify notation, we have set the values of all
lar problem. Similar results were arrived at in many of thenumerical constants equal to unity. Similar result was also
following studies[8-10]. obtained in the work of Ref.16] on the large-scale-driven
Polyakov’s theory of the large-scale random-force-drivenBurgers turbulence in when space dimensiondlty .
Burgers turbulenc¢ll] was based on the assumption that Polyakov's ided 11] about the role of violation of Gal-
weak small-scale velocity fluctuationgu(x+r)—u(x)| ilean invariance in the generation of anomalous scaling reso-
<U;msandr <L, whereL is the energy input scaleobey the  nates with Landau’s remark about the important influence of
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the large-scale fluctuations on the small-scale dynafdits place, model(1)—(3) is not valid. In this case a better de-
In this paper we will attempt to combine the zero-mode andscription is given by the initial value problem, taking into
Gl breakdown ideologies to derive equations governing theccount the turbulence decay during this delay time. This
probability density function of the longitudinal velocity dif- will be also discussed in what follows.
ferences in strong turbulence. We would like to reiterate that (3) In the third class of the flows, turbulence is produced
two measurements in the same turbulent flow performed iy a large-scale shear. Then, introducing the so called Rey-
the laboratory and in the moving frame of referefiitain or  nolds decomposition
ship) must give the same answers. The “violation of Gal-
ilean invariance” is understood hereafter only in a limited U=V+y,
Polyakov sense, as a possibilitywf,s entering the probabil-
ity density of velocity difference. It will be shown that the where v({v)=0) is the fluctuation from the time-
details of the large-scale turbulence production mechanisrimdependent mean velocity))=V, and the equation for ve-
are important, leading to the nonuniversality of the probabildocity fluctuationsv is given by Eq.(1) with f=0 and the
ity density function of the velocity difference. The results turbulence production term on the right sidd,
will be compared with experimental data.
(v-V)V.
FORMULATION OF THE PROBLEM
The force-free Navier-Stokes equations are invariant un-
Turbulence in Nature results from hydrodynamic insta-der rotations, space-time translations, parity, and scaling
bilities of various laminar |OW'ReynO|dS-nUmber flows. The transformations. They are also invariant under Galilean
transition phenomena are not universal, depending on geongransformationsx— x+Vt and v—v+V, whereV is the
etry, external fields, etc., and, at the present time, cannot bgynstant velocity vector of the moving frame. Boundary con-
accounted for by turbulence theory. Hoping for some univergitions and forcing can violate some or all of the symmetries
sality of the small-scale velocity fluctuations in the inertial of Egs. (1). It is, however, usually assumed that, in high-
range, it is customary to develop a theory of turbulencereynolds-number flows with—0, all symmetries of the
driven at large scales by some terms in the Navier-Stokegayier-Stokes(even Euler equations are restored in the
equations, that one can treat theoretically. Usually, thesgmit r 0 andr> 7, wherey is the dissipation scale where
large-scale forcing terms are assumed to be irrelevant in th@e viscous effects become important. This means, among
inerpial range. Belovy, we discuss three models. corre.sponding»[her consequences, that in this limit the root-mean-square
to dn‘ferent mgchanlsms of turpulence ger)e(at_|on. F|rs§ let Ugelocity fluctuationsu, o= \/<—02$ not invariant under the
consider Navier-Stokes equations on an infinite domain:  ¢onstant shift, cannot enter the relations describing moments
ViHV-Vv=f—Vp+ V2, of velocity differences. If all this is correct, then the effective
equations for the inertial-range velocity correlation functions
V.v=0. ) must have the symmetries of the original Euler equations.
For many years this assumption was the basis of all turbu-
The Gaussian large-scale forcifigis defined by the two- lence theories. Based on the recent understanding of Burgers

point correlation function turbulence[11-14), some of the constraints on the allowed
turbulence theories will be relaxed in what follows.
(fix,Of (X", t"))=Pjjk(|x=x"]) 8(t—t"), ©) We are interested in the multipoint velocity correlation

I . ... functions
where the projection operaté; ensures the incompressibil-

ity of the solution. The force is assumed to be acting in the — (1. ) ,
interval of wave numbers @3<k,~1/L>ky, where Q Cn(X1:X2,-- %) =(Vi1(X)Vi2(X2) . Vin(Xn)),
—o and =1k, are the volume of the system and dissipa-anq |ongitudinal structure functions
tion scale, respectively. In other words, the forcing spectrum
is assumed to decrease very rapidly outside the intdeval Sa()=([u(x+r)—u(x)]M=((Au)"),
~Kqy. In the limit k<k, the system is in thermodynamic
equilibrium and is described by the Gaussian statistics anq/hereu(x) is thex Component of the three-dimensional ve-
energy spectrur(k)o<k® [17]. Thus the order of the limits |ocity field andr is the displacement in the direction of tke
as follows. axis.
(1) First we set the large value &}, and thenw—0, so In 1941 Kolmogorov, considering decaying turbulence,
thatky/ko—c°. In the case of thé-correlated forcing func-  derived an equation foB,(r) valid whenr —0:
tion (3) the source-related contribution to the equation for the
two-point correlation function can be written in a very 1 ar*Sy(r)

6v 9°S,(r)
simple way: —4&é+ —

T T

4

=

W= (vi(x, D) fi(x", 1) yor x(|x—x"[) . . -
leading to the famous Kolmogorof law: in the limit v
(2) Often, in real-life experimental situations, when turbu- —0 and atL>r> 7, 7 is the dissipation scale of turbulence
lence is generated in the vicinity of the boundariesll defined as
flows), nozzles(jets), and bodies(wakeg and later trans-
ported into the bulk of the flow where the measurements take vS,(77)=0(1).
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The third-order structure function in the inertial ranger wherel;, |,, andD are related to the forcing, pressure, and

> 7 is given by az law; dissipation contributions to the Navier-Stokes equatiese
. below). Although the advection contributions are accurately
Sa(r)=—s¢r. accounted for in this equation, it is not closed due to the

pressure and dissipation terms. The latter can be treated us-
In fact, expression4) is an approximation, neglecting ing Polyakov’s operator product expansion idEbg|, while
small contributions from time derivatives and source func-the former presents an additional difficulty to be dealt with.
tions, valid in the limitr —0. In general, it must be modified |n what follows we will be mainly interested in the moments

to include the forcing function of the two-point velocity differences, which in homogeneous
. - and isotropic turbulence can depend only on the absolute
Sa(r)=—5&r+O[r(Au)(Af)]. (5 values of two vectorgvelocity differencev(x’)—v(x) and

) displacement=x’—x) and the angled between them with
We can see that for &function-correlated large-scale forc- g— /2 and9=0 corresponding to transverse and longitudi-
ing function «(r)=«(0)—yr*, the subleading contribution g structure functions, respectively. In spherical coordinates

4 : ; ; : 3 o , X . .
to Kolmogorovs law in the inertial range—0 isO(r~). In - the explicitly written advective terms in E¢7) involve
a more general situation evaluation of the correction is not so

simple. 7 192 19z z
In case of decaying turbulence the subleading contribu- O(m): O(F X)’ O(x E)’ O(ﬁ) G
tion to Eq.(5) is
and various trigonometric functions and angular differentia-
O(r aSz(r)) 6) tions. The theory of the longitudinal structure functions, pre-
at )’ sented below, is based on the assumption, correct for the
third order momeng;(r) [see Eq(4)], that the angular de-
while when turbulence is produced by the large-scale sheapendence can be accounted for in a simple way, and, as a

it is somewhat differenf18]: consequence, that there exists an equationéfe0. This
assumption is supported by the following observations. It is
v easy to show that in the inertial range the second-order struc-
O(r X SZ(r))' ture function

Whenr is small, these terms can be neglected. However, as _2+& &

will be shown below, they must be accounted for since the (1. 0)= 2 Du(r) |1 2+¢&; cosi() .
procedure of evaluation of the probability densiRyAu,r) _ .

involves matching of the inertial range and large-scale soluwith Dy (r)=([u(x)—u(x+r)]?). A more involved rela-

tions. tion can be written for the fourth-order momda6]
Derivation of Eqs(4)—(6) is based on the fact that, due to .

the incompressibility condition, all transverse correlation Sy(r,8)=D (r)cog () —3D | yn(r)SiM(26)

functions can be expressed in terms of the longitudinal ones +Dynn(F)SINA(6)

leading to the closed equations. One can say that in a very

limited sense the procedure projects the original threeynere D in={[v(x)—v(x+1) ] u(x)—u(x+r)]?), and
dimensional problem onto a one-dimensional one. Regrey; anqy are the components of the velocity field perpendicu-
fully, due to the coupling between different components ofj5; anq parallel to the axis, respectively. As one can easily
the velocity field, caused by the pressure terms, we cannQfaqyce from the angular dependence, the functiyng (r)

rigorously derive similar expressions for the high-order MO-5nd Dyunnn(r) denote longitudinal and transverse structure
mentsS,(r). The second difficulty is in the presence of the ¢,,ctions respectively. In the limig— 0

dissipation anomalysee below. Still, we can attempt to use

some general features of the equations of motion and derive Su(r,0)~Dy L (r)cos(9)+0(6?),
the scaling properties and general form of the probability
density functionP(Au,r). rapidly approachingS,(r,6=0)=D, (r)=S,(r). Based
on the above expressions, we conclude that, as in the theory
EQUATIONS FOR THE PROBABILITY DENSITY of multidimensional Burgers turbulencgl6], where the
. _ i probability density of velocity difference can be represented
One can introduce a generating function as P(U,r,0)~P(U,r cos@)); here in the limitd—0 the

mixing of the longitudinal and transverse correlation func-
tions is very weal O(6?)]. As a consequence, we assume
that the closed equation for the probability density of longi-
tudinal velocity differences exist. Generalization of the
theory to the case of an arbitrafgiot smal) angle 6 is the
subject of an ongoing study.
We selectN points x; with 0<<i<N on thex axis and
=1¢+1,+D, (7)  introduce the longitudinal generating function for the
N-point correlation function,

7= <eEi)\i ~v(xi)>,

where the vectors; define positions of the points denoted by
the numbers i <N. Using the incompressibility condition,
the equation foZ can be formally written

az 9z
B T —
at (9)\| ’ani Ly
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Zy={(eMu0Dy, 9) mensional structure functions, and that the longitudinal

structure functions in three-dimensional Burgers turbulence

where\;=ik;. The equation of motion foZy can be for- are close to those in the 1D turbulence. Indeed, numerical
mally derived(we neglect the subscripd in what follows: simulationg 16] of the three-dimensional Burgers turbulence
revealed a very complex velocity field with the structure
_ Nu(x) functionsS,(r) very close to the ones, previously obtained

=2 (e uxg)) in one-dimensional simulations. The i

- . possible smallness of

the interaction between different components of the advec-

Substituting the Navier-Stokes equations into this relatiortive terms is only part of the story. The pressure contribution
gives I, leads to effective energy redistribution between compo-
nents of the velocity field, and plays an important part in the

2= )\.<e%aU(Xa> _ Ju(x;) Navier-Stokes dynamics. The pressure effects are nonlocal,
7 X instantaneously transporting information between different,

(10 even very remote, parts of the flow. That is why the effects

coming from the boundary conditions and large-scale forces

where f,(x;) is the x component of the forcingy; is the  cannot be neglected even in description of the small-scale

coordinate of thgth point, andd/dx;, is the partial deriva- phenomena. The possible spontaneous breakdown of Gal-

tive in the x direction only. The summation in expression jlean invariance is the central assumption of this work.
(10) is over the position; and over the Greek subscripts  Equation(10) can be rewritten as

a=1 and 2, denoting the components of the velocity field in

u(x;j) + (%)

>+|T+|p+D,

the directions perpendicular to th& axis. The life- Pz 1 9Z
threatening terms in Eq10) are Zi=2 Nhjr(lxi—x)z= 2 INOX; N X
au(x;
=3 )\j<e)\iu(xi)[_va(xj) (9)(( J) > 1) +11+1,+D, (14)
J aj
where the large-scale Gaussian random force is defined in
N U(x) ap(x;) the limit r—0 by the correlation functionk(r)= «(0)
= _; v (12— yr2 Approaching the integral scale, the force correla-
) tion function «(r) rapidly goes to zero. We will see that the
and equation for the probability density of the velocity difference
P(U,r), whereU=u(x+r)—u(x) contains the combination
e azu(xj) x(0)— «(r) which is large at the large scales-L. That is
_VE Aj &sz (13 why the large-scale dynamics, dominated by the forcing

term, show close to Gaussian behavior of at least the first few

The theoretical and numerical wof6] on the multidi- ~momentsS, .
mensional Burgers equation led to the probability density Evaluation ofl, 1, andD in Eq. (14) is a difficult
and moments of velocity difference basically independent oProblem, and we have to make some assumptions. It is seen
the space dimensionality: the momerBs-,(r)=r", while  from the definition of the generating functiat that when
S.=1%r. This is an indication that the shock production, two points merge, i.ex;—X; the N-point generating func-
dominated by the longitudinal components of the nonlineartion becomes theN—1)-point generating function witix
ity u;9;u; (N0 summation over the subscript prevails over ~=\;+\;. This means that if, for example, the equation for
the processes coming from the mixed terms of the kindZ. contains the two-point sum
u;jd;u; which can be neglected. In other words the multidi-
mensional Burgers equation is well approximated by the sys-
tem of weakly interacting one-dimensiondlD) equations
acting along various coordinate axis. It is clear that geometry
of the objects generated by this system is very complex. The
recent paper by Gurarie and Migddl6], dealing with the
two- and three-dimensional Burgers turbulence, introduced
an angle# between velocity difference and displacementHere ¢ depends on the structure of the equation of motion,
vectorsv(x+r)—v(x) andr, respectively, and using the in- and y:|xi—xj|ao. We assume that in this limit the un-
stanton formulation, derived an expression for the generatingnown functiona(\,0) is finite. Not all functionsp satisfy
function (see beloyw Z, in the form Z, this equation. For examples=\ and ¢=\(d/d\) do. The
«exp((\r)”f(cos)), with y=3, independently on space di- functions ¢ can also include space derivatives. Combined
mensionality anc\ =|\| andr =|r|. The calculated function with the general symmetry properties of Ed4), we can
f(cos(@)) ensured correct angular dependence of multidimennarrow the class of possible solutions and derive equation for
sional structure functions. Whe#=0, the derived expres- the probability density. It follows from the Navier-Stokes
sion basically recovered the one-dimensional Polyakov's reequations that the theory must be invariant under transforma-
sult. This result tells us that it is the projection of the velocity tion: A— —\ andx;— —Xx; . In what follows we will adopt
field on the direction of the displacement vectothat pro-  Polyakov’s result that the main effect of the longitudinal part
duces dynamically significant contribution to the multidi- of the dissipation ternD is a renormalization of the coeffi-

| N1, U(Xq)  Xq, =—| Zot @

J
o, N2, U(Xz),Xz, Ix ) Z,

1%
Ha()\,y)qo()\,u(xl),xl, a_xl)zl'
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cient in front of theO(1/\;) terms on the right side of Eq. 9?22 2b 9Z,

(14). Based on the above considerations, we can write twe —,—-— ~~ ﬁ_r:)\2[K(0)_K(|Xi_xj|)]ZZ+IT+|p+D/
models for theN-point generation function, corresponding to
the different mechanisms of turbulence production intro- Ums 025
duced abovésee below T Moo (18)
pry b oz where
Z=2 MK(x—xZ- 2 { o _
e E2STESIRNES 1= N[V a(X2) dyy aU(X2) = o(X1) Fx (UU(Xq) MU D)
1% = (i_a\U
+C3 N 5 ZH I+ 1+ D’ 15  =Mire),
j
I :< Ip(Xz)  dp(X1) e)\[u(Z)—u(l)]>E)\<i ey,
for cases 2 and 3, and P 29 281 P
and
B ?Z b gz ,
Z=2 }\i)\jK(|Xi_Xj|)Z_; N D' =\w([d; U(Xp) = % qu(x) ] DW=\ (d' ).
(19
+lt+1,+D’ (16)

The point merging it andl, must be regular, while the
same procedure in the dissipation teB involves diver-
gences which are canceled by viscosity~0. As was
pointed out in11] the longitudinal O[ #2u(x)], components
of the D term result in the renormalization of the coefficient
K(r)=K(0)— gr2, leading to the negligibly smalD(r?) in front of the O(1/\) contribution to the right side of Eq.

subleading contributions to the velocity difference structure(;d')awe. artg still left W'Ith the remaw:mg)[aau((szr]] plnece of
functions, ensures the close-to-Gaussian single-point prokﬁ-e issipation anomaly, pressure tertgs and thel + con-

ability density. Equationg15) and (16) violate neither the j[r|bqt|on§, mixing all components of the ve'Iocny field. Hav-
“fusion rules” introduced above nor general symmetries ofing in mind the general fusion rules, considered above, and

the Navier-Stokes equations. By dimensionality, the coeffithe fact that the equation is invariant under transformation

cient C/x(0)=0(1/uZ.). The O[«(r)] term in Eq.(16), A andr—-—r we, notbeing concerned with preserva-
stems from the forcing functio(B). Below, we will discuss tion Of_ Galilean mvgnance, write the equation iy corre-
the two cases in detail. sponding to Eq(15):

If one is interested in a single-point probability density, #Z, B°dZ, AdZ, Upms 0Z,
Eq.(19) is to be solved for alkj=x and\ =2\; . All space =
derivatives disappear due to homogeneity of turbulence, and
we have an expected resiit7]

to describe turbulence generated by &inction-correlated
forcing (3). HereD' involves only “transverse” components
of the D term defined below. Th®[\(dZ/J\)] term in Eq.
(15 comes from theO(v) turbulence production, while

ONOr N or r on L T on

(20

Equation(20) includes the above-derived expression for the
coefficientC and the unknown parameteB® and A to be

vz 202 determined from the theory. The characteristic time in Eq.
P(U)=(;) e e, (20), T~L/u;ms=0O(1), isindependent of the displacement
r. A natural generalization of this model is EG0), with the

L . last term on the right side:
This fixes the value of the coefficiel@. Thus, Eq.(15)

yields a Gaussian distribution of the single-point velocity 1 dZ,
field. This result will be used below as a matching condition m A N
for the probability density?(U,r) in the large-scale limit
—L. The experimentally observed single-point probability with T(r)«r¢7, with the exponeng. depending on the phys-
densityP(u) is very close to but not equal to the Gaussianics of the problem. In Kolomogorov turbulencg,~3.
deviating from it at the large values of velocity fluctuations  The model corresponding to E(L6) is
us>u,ns. The theory, developed here is applicable to any
expression forP(u), not only to the Gaussian. Still, the #Z, B°dZ, AdZ,
Gaussian, which will be used below to compare the theoret- INOT N I 1 N
ical predictions with the data, is a very good approximation.

We need an equation for the generating funcigrwith ~ where theO(r?) contribution is to be kept. Equatior{g0)
A+t A,=0, giving and(21) are based on the assumption that the dynamic role
of the pressure and dissipation terms is in the renormaliza-
tion of the coefficients in front of the already-present advec-
tive contributions(8) to Eq. (7). Similar assumption was
fruitful in the theory of Burgers turbulendd 1]. Except for
In a statistically steady state the last terms in the right side, these equations are the same

+yr2\?z, (21)

Zo(\,r)=(eMuFn-ul= ey, an
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as the one in Polyakov’s theory of Burgers turbulence, withcorrect result forS;(r). Neglecting the last term in the right
the B® term simply renormalizing part of the advection ef- side of Eq.(24) (see below the solution forSy(r) in the
fects, present in the original equations. The meaning oAthe limit r—0 is derived readily:
term will be discussed in detail below. It will be shown that
it is not only responsible for prevention of the shock forma- S;=Nr3~E+8)
tion, but it also makes the weak{| <u,,J structures of the , - .
Navier-Stokes dynamics much stronger than their counterl NiS means that the f:oeff|C|em=(3;B)/3 andN=— €.
parts of Burgers turbulence. It is clear that, due to the homoS€€king the solution in the ford,<r*n, we obtain
geneity of the turbulence, all space derivatives and related
S (3+B)n

contributions go to zero wher=L. =

In the one-dimensional case the dissipation anonialy 3(n+B)

discussed in detail by Polyakov, leads only to a relatively_l_he normal Kolmogorov scaling, = n/3, corresponding to
small modification of a corresponding coefficient. It will be 9 noies P 9

shown that in case of three-dimensional turbule®d- the no-intermittency case Is achl_eved n th_e liit>. The
maximum, Burgers-like, intermittency with all exponents

— 20, part of which is to be attributed to a large pressure _—1 due to the tanhshocks is recovered whedi= 0,

effect preventing the shock formation. In the resulting dy- o -
namic equation$20) and(21) the contributions fronD and Deriving Eg.(25), the contribution of the order

|, are mixed and the origins of eoach term, hidden in numeri- Uy N(N—1)S,_1(1)
cal values of the coefficients, B”, andA, are not easy to L n+B
establish. Equatiof20), explicitly involving the single point
Urms, IS suited for description of the generating function in, o neglected in comparison with tH@[nS,/(n+B)r]
bothr—0 andr—L limits. In the inertial range, where the oo Substituting the expression f8r=A,rén, with ¢
displacement is small, theO(uy,) and the forcing contri- fom Eq. (22), gives a general solution " "
butions can be neglected. They are important, providing the

large-scale Gaussian matching constraint needed for determi- Urms n(n—1) ré-1*t1
nation of the amplitudes of the structure functidhs Thus Sh=Aqrén+ . A1 T g PR
Egs.(20) and(21), describing the correlation functions in the n-ioen
inertial range, differ by the last of the right-hand-side terms  The coefficientsA,, will be derived below. Expression
reflecting the details of the large-scale turbulence generatiofpe) shows that due to the presence of i én-1*1) sub-
processes. It will be shown below that this difference is reominant contributions, the experimental determination of
sponsible for the nonuniversality of the probability densitythe scaling exponents is a difficult task, and that proper ac-
function of the velocity difference. In the limit—0 the  counting for it can lead to substantial broadening of the in-
equation for the probability density is derived readily from ertial range and a more accurate determination of the numeri-

(25

(26)

Egs.(20) and(21): cal values of the scaling exponents. In addition, it
establishes the relation between the amplitudes of the odd-
d JoP o JP A 0 Urms 32 and even-order moments.
ToU0 o P o Tt au UP+ L 9u? up, By definition of the integral scale, adopted in this work,

(22)  the third-order momen8s(r=L)=0. Sinceume~(EL),
expressiong25) and(26) give

9  aP IP A 9 9%z
AT A B A U T S et 4 B+2
U = or - TegYPTrTogE @ A== 5 =9 (goa.

which, taken in accord with the closures derived from vari-

ous renormalized perturbation expansidns=2 leads toB
Multiplying Eq. (22) by U", and assuming the existence ~20 and

of all moments, leads to

PROPERTIES OF THE SOLUTION

23 n 27
n:_ T
S, An S, Upmsnh(n—1) S (1) (24) 3 n+20
—_ - - _ r ,
o ntBr L n+B ! The calculated values of the expone#iig=0.0759,£,4

=0.0946,¢,,,=0.187,£,=0.365,£,=0.696, £,=1.278, &5
whereB= —B%>0. Equation(24) is to be solved under con- =1.533, £&=1.769, &,=1.988, 3= 2.190, £,=2.379, and
straint (4), which is the result of the energy conservation é;0=2.555 are indistinguishable from the best available ex-
inherent to the Navier-Stokes equations. This is the conseperimental data. One has to keep in mind that the value of
guence of the renormalization ideology leading to Etfl),  the parameteB can be nonuniversal, slightly varying from
which is a model, not rigorously derived from Eq%)—(3), flow to flow. This can lead to some nonuniversality of the
but based on some general symmetries of the Navier-Stokexponents. The comparison of the magnitudes of the expo-
equations. That is why th&law comes out of Eq(24) only  nents, given by Eq(27), with the outcome of numerical
for a particular set of parameters. In a “final” theory the simulations by Chefi19], is presented on Fig. 1. Expression
rigorous equation fo5,(r) must automatically produce the (27) predicts a saturation of the values of the exponépist
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$p———Tp—T——————7————— ing or dissipation range probability density functions. Based
i | on the result for the single-point POE7], one has to seek
the solution to Eq(25) that becomes very close to Gaussian
at the scales larger than some integral stal@his condition
can serve as a definition of the integral scale. In reality, the
integral scale is never much smaller than the size of the
system. The experimental data show that at large scales the
PDF is close to Gaussian, with some small deviations seen at
the far tails whereéJ>u,,,. Based on the data we can safely
assume that at the large scales the first f&#0~20 moments
are very close to their Gaussian values. The nonzero value of
the odd-order moments,,,1(r), with n=1, implies the
i 1 asymmetry ofP(U,r). However, this asymmetry is very
bt L small  with S,,,1(r)/son01(r)<<1, where s,,,4(r)

0 5 10 =(Ju(x)—u(x+r)|>"*1) is often measured by the experi-

n mentalists. It has been shoW21] that up ton~5 this ratio

is in the range 0f0.1, and that the experimentally observed
PDF can be made symmetric by a signal-filtering procedure,
leading to a near vanishing of the odd-order moments. The
.~2 in agreement with some general ideas based on therocedure left the even-order moments unchanged, indicat-

path integral representation of the solution of the passivdNd that the PDF asymmetry only weakly influences the
scalar problem Chertkof20]. even-order moments. The data will be presented below.

The expression fo8,(r) corresponding to modeR3) is Now we setl. =1 and, neglecting all odd-order moments,
calculate the PDF directly from the generating function:

FIG. 1. Comparison of the calculated scaling exponéfus
mula (27)] with the results of numerical simulations by Cher9].

n(n—1)(n—2) r3*én-3

S,=A.rén+ yA,_3 : 2 (=
n+B 3+&_3— &, -z
3 28 P(U,r) p Jo cogkU)¢(k,r), (30
It follows from Eq. (28) that with
4 3 * 2n
Sa(r)=—g r+0o(r, d(k,r)=1+ 21 (=D"AZ@n-1liré o (3D)

in accord with an exact result. . . .
. . . We see that this expression giv&,=A5(2n—1)!1ré"
One has to solve the equation for the probability densnyIeading o the desired Gaussian values=t = 1. The same

P(U,r)>0 going to Gaussian in the limiL. —1. The equa result P(U,r)xexp(—U%2r?3) is recovered in the limiB

tion is
—00,
J 9P JP 1/3+B\ o In the opposite limitB—0, the probability density tends
war Ba Ty T)mup- @9 10
B . . 2 1/2 )
It may be somewhat easier to deal with the equation for the Po(U,r)=(1—r)8(U)+r _) e*U2/2urms,
generating functiorZ,: ™
9?2, B dZ, 1(3+B)\ dZ, giving all £,=1. This corresponds to Burgers turbulence in
anar o r\T3 | o the GI broken rang¢l1l]. This result is very close to the

outcome of the theory of the Burgers turbulence in the limit
The structure of the solution is clear from the scaling of theof space dimensionalityd — [16], predicting P(U,r)

moments derived above: =(1-r)o(U—r)+ry{U—r/(upyg]. This fact is an indica-
tion that the Galilean invariance-breaking terms in the equa-
* tions of motion, obtained in this work, are quite close to the
22:% (—1) AN LEFBINI3B )] truth. It is clear that to reproduce the shiftédunction of

Ref.[16] we have to abandon the simplification of treating

with as yet unknown amplitude%,>0 which will be evalu- the PDF as an even function of.

ated below. The most important outcome of this expression To uncover the Inner strug:ture otytl@‘unctlon, the data
is the fact that the odd-order momerts, . <0, which must be presented in coordinatdsr“ with a~0.365 (see

means that the PDP(U,r)#P(—U,r). It is clear that ':Ehe fgfres_ rk])e:]ow We can cor;wgare the prediction given by
P(U,r)=P(—=U,—r) in accord with the symmetry of the g. (31 with the experimental data on
Navier-Stokes equations. S (1)

To evaluate the probability density function we need to Con(r)= n”_=(2n_1)” réan—néz, (32
match the inertial range PDF with either the energy contain- S;(r)
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FIG. 2. Probability density of velocity difference&(x) v,

=r13p(U/r®) vsx=U/r'3,
( ) FIG. 4. Measured PDF’s of transverse structure functi@«g

where all¢, are given by Eq(22). Sreenivasaret al. [21] for a few values of the displacement 3600, 900, and 2&m.

measuredC,n(r) in the low-Reynolds-number experiment mentsS, with n<6. The comparison between theory and
(Ry~200) conducted in the laboratory boundary layer. Theexperiment is somewhat difficult due to an uncertainty in the

results of Ref[21] for r~0.1-0.2 are theoretically needed ratio/L wherelL is a poorly defined
integral scale of turbulence. The inertial range prediction of
Cy~3.6, Ce=~24.8, Cg~261, Cyy~3770, this papeiC,~ 3r ~%11%agrees well with the data obtained in
_ ) o the high-Reynolds-number experiment®, & 1500—-2500)
which are to be compared with our predictians 0.2: in the planetary boundary lay¢21].

The evaluated probability density functions are compared
with the outcome of the measurements of Noubeal. [24]
. . . ._in Figs. 2—-4. The high quality experimental data on the
| The intermittency grcl)vxfsf strgngly \k/]wth ?eqreasg O.f th;’ .d's'transverse structure functions were obtained using real-space
placement . For example. or=0.1 the relations derived in measurements in the air jet. Thus, for the time being, com-
the present paper give paring theory with experiment here we assume that the prob-
ability density of the longitudinal velocity differences has the

same shape as the one of transverse velocity differences. The
These numbers agree extremely well with the results of nuduantitative agreement fgr<r/L <1 is very good. We were
merical simulations by Chef22], who was able to produce not able to pIolP(U,r) for_ very small values of the displace-
the data set aR, =200 consisting of a few billion points. MeNtr, but the data in Fig. 4 show the tendency of the PDF
The somewhat lower values @f,, obtained in the physical to the & function in the limitr — 0 in accord with the analytic
experiments can be attributed to the insufficient statistics ofSYMPtotics. Figure 2 presents the same curves, plotted in the
the real-life data set. Recent high-Reynolds-number expero0rdinatesJ/r==. One can see increasing deviations from

ments R, ~15000)[23] produced similar results for the mo- the Gaussian ayL =1 with decrease of the displacement
It is clear from the figure that the probability density cannot

U be represented in scale-invariant fotf). This is the mani-
BN : ; : festation of the intermittency. The calculation was performed
using MATHEMATICA ™, which failed to produce the genera-
tion function ¢(k,r) with k>5. The information onp(k,r)

with 0<k=<5 was sufficient to calculat®(U,r), with an
accuracy~=1-2 % in the range of variation®®U <3-4 and
3<r<1. The fact that at=1 the PDF must be Gaussian
serves as a good test of the quality of the numerical proce-
dure.

Using the derived expression fdf,, one can easily
evaluate the correct asymmetric probability dengtyJ,r)
giving the values of the odd-order moments in agreement
with experimental data. All one has to do is to introduce a
term involving the sin contribution to the Fourier-transform

Log (P(U,r)) in Egs. (26) and_ (27), generating nonzero odd-order mo-
ments. Demanding thas,,,,(L)=0, we have, from Eq.
FIG. 3. Probability density?(U,r) as a function ofU/u,ms. (26),

C,=3.16, C4=25.05, Cg=272, C,o=3256.

C,=3.42, C¢=31.26, Cz=412, C,,—6184.
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A Urms 2”(2n+1)A2n T =
(B (204 14B) (En—Ent 1)

RS

valid for n>1. Settingu,m¢~(EL)Y and takingA,~2, we
obtain

A3N_08, A5%230, A7%650

In the case of the large-scale-driven turbulence, the ex-
pression forA,, ., is derived in a similar manner:

A oA 2n(2n+1)(2n—-1)
2017 T YR -2 N T B) (3 €an-2— Eanr 1)

This relation contains two unknownsandB. Assuming
universality of the exponents, implyir§= 20, we find from
the relation forA;= — £ that y~6. In the correct dimensional Log (£(z))
units y~6&. This will be important below for the quantita- FIG. 5. Approximate parametrization of the PDFP(U.r) vs
tive comparison of theoretical predictions with experimental, _;, « u.sing formula(37). ’
data. This result has some interesting consequences. Keeping

the amplitudes\,, equal to the ones derived above, ] o .
whereN is a normalization constant, ama=U/r ¢, with, as

As~14, A,~373, Agy~28500, above,a~0.365. The parameteaa~2—4. Expression$31)

_ ) and (32) give a very good approximation for the moments
we see that, even if the exponents are universal, the ampls_ () with n<10. For exampleA,=1.9-2.6,A;=—0.8,
tudes of the moments are not, meaning that the shape of the, —=20-28, A;= —15.4-21, A;~657, A,~—785, etc.,

probability density can vary from flow to flow. It is interest- yery close to the first few amplitudes,, calculated above.
ing that to experimentally observe this effect one has to mearigyres 5 and 6 show the probability density function
sure high-order moments since the first few structure funcp(y ) given by Egs.(36) and (37).
tions in different flows, considered here, seem to be close. The theory can be approximately generalized to the case
Hereafter we will be mainly interested in mod@0), which st correct anomalous exponents
is more closely related to physical experiments.

The expression

. Si A /
—k)2n+t Ro=qmz~ ze 1 "2 (38)
— £ A
dulkir) =2 Agniarfenst (o (33 S° A
is to be substituted into the integral Expression(38) gives S;, in accord with the Kolmogorov
1 (e relation. Forr~0.1 andA,~2, we deriveR;=—0.31 and
P0=—-f sin(kU) ¢4(k,r)dk (34 Rs=—42. _
mJ - To assess internal consistency of the theory and under-

stand the role and meaning of tAecontribution to Eq(20),

to give a total asymmetric PDFP(U,r)=P¢(U.r)  \ye write a formally exact equation for the two-point genera-
+Pg(U,r). A very accurate parametrization of the central tion function:

part of the PDF, corresponding to not-too-large valueb pf
illustrating appearance of the asymmetric PDF, is

(rbl(k!r):_%rkgd)(k!r)i (35)

Logy [P(U,7)]

giving

_ B 2r *Pe(U,r)
P(UJ)—Pe(U,r)+Po(U,r)—Pe(U,r)+ET

(36)

-3
This expression is approximate, and serves only to illustrate
the mechanism of appearance of the experimentally observec

asymmetric PDFP(U,r). The central part of the probability e
density can can be very accurately parametrized by formula
(36), with
Po(U,r)= E e~ X tanh(x/a) (37)
e re FIG. 6. Asymmetric PDFP(U,r) given by Egs(36) and (37).
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P2 2%\, 0 Z,+17+1,+D o
ot N o M [x(0)— k([ =x;[)]Z+ 17 +1,+D.
(39

The equation for the probability densiB(U,r) can also
be formally written,

2

J aP+aP_ L T(U,r)P(U 40
uYar W__EW[ (U,nNPU,N], (40 - - —- " n :
U
where 0
T(U,r)=(iy+ir+d/U) (41 al

is the conditional expectation value @f=i,+ir+d for a FIG. 7. Calculated conditional medifU,r)/2 using an approxi-
fixed value of velocity differenceU. Here d=d’ mate expression for PDE6) and (37).
+ V[ Uy (X)) = Uyy(X)]. The formulation of probability den-
sity functions in terms of conditional dissipation and produc- 1 4 u P
tion was introduced in Ref§25,26, and became a subject of —Z — T(U,")P(U,r)=——"__UP(U,r)
intense investigations. Three-dimensional turbulence prob- 29U L oU
lem is somewhat different since there is no way one can a(B+1)U
separate various contributions ®(U,r). Indeed, we are +——P(U,r)

dealing here with the projection of a three-dimensional dy- r

namics onto a line. This leads to violation of all conservation AU

laws, and it is clear that the pressure-induced processes of - P(U,r).

the correlation and redistribution between different compo-

nents of velocity, probably conservative in the original equa- ! B , .,
tion of motion, can lead to the dissipationlike effects of NOW we have to define the “representative exponent

T(U,r). We can see from the above definitions that, due tg=én/n With 0<n<3, which can be done only approxi-
homogeneity of the turbulence, mately. Choosingx=¢;, and recalling that;(B+1)=A,
the last two terms cancel and

— )= L

u,

Comparing Eqgs(40) and (41) with Eq. (22) gives satisfying constraint42).

A much more interesting relation is obtained by substitut-

19 Ums d ing Eq.(36) into Eq.(43), with the scale-invariant expression
_EWT(U’”P(U’”:_ L EUP(U'” for P,(U,r). Taking into account thaw(B+1)=A, we
have
U dP(y,r
+(B°—1)J 2 )dy
—w Or T(U,r)_2(B+1)(1—3a) dP(U,r) ad
U 2  15P(U,r) PV (44)
—A—P(UN. (43

The plot of T(U,r) calculated from Eq(39) using approxi-

mate relations(36) and (37) is presented in Fig. 7 for
Recalling thatB=—B°>0 and A=(3+B)/3>0, relations ~0.01. Outside the interva-2<U/r®<3—4 the curve
(42) and(43) give an equation for the coefficieBt>0. Itcan  saturates which might be an artifact of the exponential as-
be solved numerically to establish consistence with thgmptotics the approximate formulé36) and(37), valid only
above calculation leading tB~20. An interesting insight whenU not too large. It is interesting that the curve is asym-
into Egs.(42) and(43) is obtained if we use the fact that the metric, reflecting the asymmetry of the PDF. In the litdit
deviations from scaling of a central part of the PDF are_, 0, expression44) gives
small. This means that

4(B+1)(3a—1) U
u) TUD~ g 7.

re)”

1
P(U,r)zr—aF

This relation takes into account thatx3-1. Choosinga
Substituting this into Eq942) and (43) gives ~(3+B)/3B~23/60~0.383 gives
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0.84A2 U

T(U,r)~0.84mwwg, (45)

whereA,~2 is the amplitude of,(r).
Now we return to the estimate of parameBerWe saw

1747

guences of expressiof26). Experimental determination of
the inertial range is usually done by establishing the interval
where the third-order momer8;(r)«r, in accord with the
Kolmogorov relation. As one can see from Eg6), this is

not so easy because of térS,) subdominant contribution,

that settinge= &, though shedding some light on the struc- 9iVing

ture of expressioi43), does not allow us to estimate it. The
problem is thatS;=0, and one cannot use it for the nondi-
mensionalization of the argument of the scale-invariant PDF.
A different parametrizationa= &,/2, typically used for

analysis of experimental data, leads to cancellation of the la

two terms if

& _ B+3
2 (B+1)=—,

giving B~40. With the exponent~0.383, best character-

izing the top of the PDRP,(U,r), we haveB~12. This

simple calculation demonstrates the consistency of the model =" _ 5

for T(U) with the magnitude of the parametBr=20, de-
rived above.
Expression43) can be modified using an identif27]

JP(U,r) J

. U
I1(U,I’)Ea—r=—m <a—rU>P(U,I’)

J
Emll(u,r)P(U,r),

wherel ;(U,r) is the conditional expectation value &f)/or
for a fixed value of velocity differenc&J. Equation (43)
reads

urms d

u,nPU,ry=— e

5T UP(U,r)+(B+1)

xll(U,r)P(U,r)—Ag P(U,r).

It is easy to see that

10U u(r+48)—u(d)—u(r)+u(0) B
20 B B

UX(I') - UX(O).
(46)

Sy~—0.8+0(rt7),

where we se€,~0.7 andu,,,.=L=£&=1. To make a quan-

&tative comparison of this relation with the data, we have to

restore physical dimensional units. Let us define

r En—(n/3)
Sn(r)= AnSnEAn(gr)1/3< E)

Relation(26) can be rewritten

Urms n(n_ 1)An—1
s " @D (B (&1t D)

r §n717§n+1
:

The high-Reynolds-number experimef23] was con-
ducted in the atmospheric boundary layer on the tower at 35
m above the ground. The measunegs~1.4 m/sec and the
mean dissipation raté~0.03 nf/sec. The measured root-
mean-square streamwise velocity componepts in the
wall-bounded flows is somewhat larger than that of the ve-
locity components perpendicular to the direction of the flow.
Since in relation(26) we are interested in,,s corresponding

to the top of the inertial range, a good estimate for
Urms/ (EL) Y3~ 1. TakingL~35 m andA,~2.0-2.5 gives

- %%O.S— (0.06-0.08r°7

and
- %~20— 2ro7
S5
The experimentally observd@3] relation

r\ &= (513

S5=A5(5r)5’3(E ~0.091%3

This expression shows that experimental and numerical in- ) ) )
vestigations of conditional expectation value of velocity-iS consistent with numerical values férandL used above.

derivative difference for a fixed value df is important,
since the combination

Bl aUU B+3 U
B\ Y "5 7

3 P(U,r)

(47)

The third- and fifth-order moments, calculated from the
above relation, are presented on Fig. 8. The parameters used
were: As~20 andA,~22 [23]. The value of the integral
scaleL~35m, used above, can be slightly overestimated.
ChoosingL~20-30 m does not substantially modify the
above conclusions. This result is extremely important, since

determines the structure of the probability density. Sincdt shows that without explicit accounting for the subdominant

P(U,r)=P(—-U,-r), we have, from Eq(35),

TU,n=—T(-U,—r).

LARGE-SCALE CORRECTIONS TO SCALING

O(r%% component ofS;, one cannot observe the Kolmog-
orov relation except in very high-Reynolds-number flows. It
also tells us that, in fact, the inertial range can be made much
broader and that scaling exponents can be established very
accurately with the proper data processing. One can see from
Fig. 8 that the fifth-order moment starts deviating from its

To complete the comparison of the present work predicasymptotic value earlier tha®;. Expressions corresponding
tions with experimental data, let us discuss some consde model(23) can be written easily,
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will enable one to obtain direct information about the sub-
leading contributions to the moments and, as a result, di-
rectly assess the quality of the equations for the moments
As we see, in the limit —0 the contribution from the sub- Sh(r). The knowledge of3, will define universality classes,
leading term in this case is much smaller. This means thafliffering by the mechanisms of turbulence generation. Ac-
for a given Re, an investigation of the scaling exponepts cording to this work, the function§,., should demon-

in the numerically created large-scale-driven turbulence iStrate the scaling behavior all the way up to the integral scale
much easier. L. If this is indeed so, the measurements are not too difficult.

If turbulence is driven by the large-scale body force, the
subleading correction to the Kolmogorov relation ®y(r)
DISCUSSION AND CONCLUSIONS is an analyticO(r®) function. This flow can be realized in

The theory developed in this work is based on equation@”merical experjments. In real-life situationls this kind of
including a simple model for the pressure and dissipatior]°'cing rarely exist. The appearance of 0¢r ) nonana-
terms. This model, though satisfying all basic symmetry conlYtiC correction in the relation foS;(r), derived from Eq.
straints, has not been rigorously derived from the Navier{22), can be easily explained in both cases of decaying and
Stokes equations. The merits of such work can be judged b eared turbulence considered above. Th_e measurements in
comparison of theoretical predictions with experimental datal®tS and wakes are usually taken at the distanéem the
The calculated exponents and the amplitudes of the structufdi9in (nozzles, bodies, efc.where turbulence is produced.
functionsS,(r) agree very well with available experimental 1hUS, as stated above, the proper model is that of decaying
data. The theory also predicts large-scale corrections to scdkrbulence at the tim&=x/U after turbulence generation at
ing, thus allowing calculation o8, up to the large-scale t=0, whereU is the mean velocity at the crossectian
cutoff L at whichS,,,,;(r) becomes very small. This pre- Then, assuming a close-to-self-similar decay, the correction
diction is nontrivial, and can serve as a rigorous test of théS
model. The scale where it occurs is an integral scale of tur-
bulence, corresponding to the top of the inertial range. This

definition seems very plausible, since it corresponds to th@vhere the functiorF(t) describes the time-dependence of

length scale of the nonzero energy flux setup. ; : }
The most straightforward experimental test of this theorysz(r’t) in decaying turbulence. In case of the shear

. ; nerated turbulence th rrecti
can be performed in the following way. Assume that thege erated turbulence the correctior| 18]
odd-order moments have the form

X

O(r Sy (r)=rSy(r)Fy(T)~r,

oV
O(r ~ Sz(r))wr”.
Son+1=Agnsal 20414 By grhnt,
We do not know how general this result is. According to the
where the exponenf8,, reflecting the large-scale dynamics, present work, it cannot be universal. The theory makes a
have been evaluated above for the two cases of turbulenabrect connection to Landau’s remark about the role of the
production. The log-log plotting of the functions large-scale fluctuations of turbulence production. We cannot
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answer the most important question about the universality of The present work makes an additional step in this direc-
the exponents; for this we need detailed and quantitative inton: it assumes that, due to incompressibility, Gl in three-
formation on the production terms in the equations of mo-dimensional turbulence is broken for all, even small velocity
tion. However, even if the exponents are universal or belongluctuations. This means that the “normal scaling” does not
to some broad universality classes, the probability densitold for all momentsn>—1, which seems to agree with
function of velocity difference is not universal since the am-experimental data showing deviations from Kolmogorov
plitudes of the momentS§,,(r) depend on some of the fea- scaling of all moments, . Free from the Gl restrictions, the
tures of the nonuniversal large-scale dynamics and the d&zertex corrections are introduced in this paper from the very
tails of the smgl_e-pomt probability d_en5|t_y. . beginning, resulting in the equation of motion for the prob-
The assumption ahout a Gaussian single-point PDF, reé\bility density of the velocity difference. This equation is
sponsible for the values of the amplitudes of the even-orde ased on some general symmetry properties of the system
moments, was used here as a good approximation Sumde%d satisfies all known realizability constraints. ,

for a demonstration of the basic features of the theory. It is The theorv develoned here is based on a few assumptions
clear that the nonuniversality of the symmetric part of the_. Ty P . P '
First of all, it assumes the existence of a closed equation for

PDFP.(U,r) is determined by deviations of the single-point o C ) e
PDF from the Gaussian. It is interesting that, according td°ngitudinal structure functionS,(r). This is a mere gener-

the present work, even neglecting the nonuniversality oftlization of_the Kolmogorov result for_a particular case with
P.(U,r), the asymmetric pa®o(U,r), responsible for the n= 3. Physical grounds for the equation 8 are based on

odd-order moments, is not universal. This is quite reasonabli€ fact that the Navier-Stokes nonlinearities tend to produce
since the very existence of the flux, reflectedPig(U,r), is  two main effects: shock generation due to advection terms,

the result of the large-scale dynamics. which are balanced by the pressure contributions. An inter-
The theory presented here is a departure from all previouglay between the two leads to creation of the vortical struc-
field-theoretical attempts to develop an infrared divergencetures seen in the experimental data. The three-dimensional
free turbulence theory, able to explain the anomalous scalingature of the structures is lost when one considers projection
of the moments of velocity difference. It has always beenof the entire dynamics onto a line. All we know is that the
assumed that, due to Galilean invariance, the vertex correshock production is effectively prevented by the pressure
tions are equal to zero in the infrared linkit=0. The sup- terms, leading to an invalidation of the bifractal description
posed Gl led to formulation of the Ward identities which of the pure Burgers dynamics. We also know that the equa-
were not too helpful. The low-order Kraichnan's LHDIA tion of motions are invariant under transformatida- — U
[28], which in addition to the conservation laws correctly andx— —x, and that the dynamic equation for thepoint
accounted for such basic symmetries of the problem as rafyeneration function must satisfy the general fusion rule
dom Galilean invariance, led to the Kolmogorov energyyansforming it, upon point merging, into the equation for the

spectrum Wit_hout_ any cor_rections. It is interesting that the —1) function. These are the physical reasons responsible
same approximation, applied to Burgers turbulence, resulte%\i all but one of the contributions to E€20)

in a k™2 energy spectrum corresponding to strong shocks. As was mentioned above, except for theterm in Eq.

Kraichman explained this nontrivial result in terms of the . T
hase decorrelation due to the interaction between compcg-zo)’ all others are more or less prescribed by the original
P equation of motion. However, without the term, Eq.(20)

nents of the velocity field, nonexistent in the Burgers dynam- . .
ics, which effectively prevents the shock formation. Accord-contradicts the exact relatio@2), and thus cannot be cor-
ing to Ref.[28], it is this decorrelation which is responsible rect. _I have not been able_to find an alternative d_escrlptlon,
for the formation of the close-to-experimental data Kolmog-OPeying generally the fusion rules and symmetries of the
orov 3-energy spectrum. All attempts to preserve the GalProblem, and producing a solution satisfying E42). For
ilean invariance of the theory of three-dimensional turbu-example, one can add th@(Z,) contribution to the right
lence led to the disappearance of the integral stafeom  side of Eq.(19), which does not contradict the basic symme-
the problem and to the resulting inability of the theory totries. However, it violates one of the principle constraints of
predict deviations from the Kolmogorov scaling. Referenceghe theoryS;=(U)=0, and thus cannot be correct. The suc-
[11], [29], and[16] all presented theories of Burgers turbu- cess of the Boldyrev theory, including this term, in describ-
lence, showing that the Galilean invariance is not to be takeing some of the regimes of Burgers turbulep28], is based

for granted; only the low-order momeng&,<,«r" corre-  on the fact that, like Polyakov's work, it describes only the
sponding to]U|<u,ms can be described in this regime. The momentsS, with n<1, and the resul6,=0 can be achieved
structure function$,r with n>1 scale withu,,s, depend- using contributions coming from the non-scale-invariant
ing on the large-scale features of the flow. These workserms, which are beyond approximations of Rdfkl,29.
stated that Gallilean invariance is not sacred, and departurghe same happens in the theory of REf6], leading, in
from it are responsible for the anomalous scaling of the highaccord with the bifractal picture, to a PDF consisting of two
order moments observed in Burgers turbulence. The samgntributions responsible for the moments witk 1 andn

conclusion was derived in an earlier wdi80] predicting >1, respectively. In the present paper, treating all moments
_ S,(r) with n>0 on equal footing, we do not have the luxury
[u(x+r1)—u(X)JEX)EX+T)cumd £)?(r/L)°. of satisfying the dynamical constraints using some contribu-

tions extraneous to the theory and, as a result, our choice of
This experimentally confirmed relatiof81] explicitly in-  the allowed terms in the equations of motion is much more
volves the GI breakingl,nys. narrow. One may also attempt to add
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Z, exponents,# 1 for n>3. The possible relation of E449)
h o to the equations introduced in this paper will be discussed
elsewhere.
not violating the symmetry of Eq20). This gives The good agreement of the scaling exponents of the struc-
ture functions with experimental data derived in this paper,
n+h though gratifying, is not the most important outcome. The
§n=m- cascade models, not related to the equations of motion, also
give a quantitatively correc,,. However, no model was
However, sincet,=0, the constanh=0. able to address the problem of the asymmetry of the prob-
Equation(22) for the PDF can be rewritten in the limit of ability density functionP(U,r)#P(—U,r) and, as a conse-
smallr as quence, predict the scaling exponents and the amplitudes of
the odd-order structure functions. Only dynamic theory,
based on the Navier-Stokes equations, invariant under trans-
aP aP U aP(y,r) ; _ _ ;
—_4+U-—+B° f — 2 dy=—, (48  formationsu— —u andx— —x, can lead to the asymmetric
ot or e Or probability density and correct properties of the odd-order
moments.

The present theory, though based on some physical con-
whererer/U. The meaning of thé term can be understood siderations developed for the Burgers equation, is not a small
from the shape of Eq48) if we take into consideration that, perturbation around Burgers phenomenology: the coeffi-
unlike in the one-dimensional case, the interaction with thesjentsB~20 andB>b~2 obtained in Ref[11]. Moreover,
transverse components of the velocity field produces effecthe relevant coefficientB®, renormalizing advection contri-
tive sources, and sinks or friction for the longitudinal corre-putions in Eq.(19), is strongly negative, unlike parameter
lations. Then Eq(48) is the equation of motion taking these b>0 in the theory of Burgers turbulence. This means that
sinks and sources into account in the relaxation-time apthe pressure and transverse terms, preventing formation of
proximation. In other wordsr~r/U is simply the time strong shocks, are extremely important here. On the other
(eddy turnover timerequired for the longitudinal structure hand, the Burgers effects are not unimportant at all. To dem-
to substantially change its shape and size due to interactiorshstrate this, we can neglect the “original” Burgers terms in

with the transverse components. This characteristic timethe equation of motion and derive the relation for the mo-
though plausible, is yet to be derived from the final “micro- ments:

scopic theory.” It is important that Eq48) is conservative,

so that, sincéU)=0, Sy=1. Thus the right side of E448) o UmsAng rkn-1t1
describes both sinks and sources. This is consistent with the Sn=AnT = A, n(n-1) A
results of the present paper: in the small-scale lirgj, 1—§

sréns>r"~g o for n<3, while S,<S,gxr for all n>3.

Here S, is the nth-order moment of velocity difference \here now

measured in the large-scale-driven Burgers turbulence. This

can be seen directly from E8): the PDF tail withU>0 A

grows, while the part withU<O decreases, making the kn=gr M

Navier-Stokes PDRP(U,r) much more symmetric than the

one governing the Burgers dynamics. This means that due to

the interaction between different components of the velocityand A/B’ <1. We see that without “small” Burgers terms

field, the weak structure§|<ung, generated by the 3D the equation of motion gives normal scaling, and that is why
Navier-Stokes dynamics, are much more intense than thethey are essential for a derivation of the anomalous scaling
counterparts in the Burgers turbulence. At the same time, dugxponents. If all this is correct, one may say that the anoma-
to Kraichnan’s phase decorrelation, the strong structures ipus scaling is the result of the dynamic interplay of the
the Navier-Stokes turbulence are much weaker than thgyrgers-like tendency to create singularitieshocks with
Strong shocks, responSible for the high-order moments of thﬁ]e “norma"zing” action of the pressure terms and the in-

Burgers dynamics. compressibility constraints.
In a recent papef32], a modified one-dimensional Bur-  The equations developed here are based on the phenom-
gers equation enology relevant for the longitudinal structure functions, and
that is why we cannot say anything about shape and scaling
= u(x’) of transverse structure functions. The main problem is that

U+ U u+ au, j

iy dX =T U (49 the odd-order momentsSh,  ;=([v(X+r)—v,(x)]>"*1)

=0, where vector is parallel and, is a component of the

velocity field perpendicular to the axis. This means that the
was considered. As in Refl2], a &function-correlated PDFP(Av,,r)=P(—Av,,r), and the equations governing
Gaussian random force characterized by the spectrunhe probability density of transverse velocity differences
[f(k)|%ck ™! was used. The large-scale dissipation was intrommust have different symmetry properties than E@$) and
duced to avoid growth of the modgk=0). It was shown (21).
that addition of the nonlocal contribution is sufficient to pre- The most important feature of hydrodynamic turbulence,
vent the shock formation and generation of the nontrivialdistinguishing it from equilibrium statistical mechanics, is a
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constant energy flux in the wave-number space. It is thigroximation, similar to the one introduced in this paper. It is
energy flux that makes the probability denditgU,r) asym-  not clear if this can lead to the improved description of ex-
metric, leading to the nonzero values of the odd-order longiperimental data.
tudinal structure functions. It is not clear how the informa-

tion about the energy flux is reflected in the transverse

structure functions coming out from the corresponding sym-

metric probability density. It is even unclear & (r) is a I am grateful to R. H. Kraichnan whose remarks, insights
dynamically relevant object. In the theory presented here, thand constructive suggestions were most essential for this
transverse components of the velocity field simply serve as work. My thanks are due to S.-Y. Chen, K. R. Sreenivasan,
“bath,” introducing some renormalization and dephasingB. Dhruva, R. Miles, and U. Frisch for providing me with
into the energy-flux-carrying longitudinal dynamics. The an-their most recent, sometimes unpublished, experimental data.
gular dependence of the structure functions in threeVery interesting and stimulating discussions with S. Bold-
dimensional turbulence can be recovered using the multidiyrev, A. Chekhlov, M. Chertkov, U. Frisch, M. Nelkin, A.
mensional equation for the two-point generating functionPolyakov, and B. Shraiman are gratefully acknowledged.
with the pressure terms accounted for in the mean field apFhis work was supported in part by ONR/URI grants.
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