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Probability density and scaling exponents of the moments of longitudinal velocity difference
in strong turbulence
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We consider a few cases of homogeneous and isotropic turbulence differing by the mechanisms of turbu-
lence generation. The advective terms in the Navier-Stokes and Burgers equations are similar. It is proposed
that the longitudinal structure functionsSn(r ) in homogeneous and isotropic three-dimensional turbulence are
governed by a one-dimensional~1D! equation of motion, resembling the 1D Burgers equation, with the
strongly nonlocal pressure contributions accounted for by Galilean invariance-breaking terms. The resulting
equations, not involving parameters taken from experimental data, give both scaling exponents and amplitudes
of the structure functions in an excellent agreement with experimental data. The derived probability density
function P(Du,r )ÞP(2Du,r ), but P(Du,r )5P(2Du,2r ), in accord with the symmetry properties of the
Navier-Stokes equations. With decrease of the displacementr , the probability density, which cannot be rep-
resented in a scale-invariant form, shows smooth variation from the Gaussian at the large scales to close-to-
exponential function, thus demonstrating onset of small-scale intermittency. It is shown that accounting for the
subdominant contributions to the structure functionsSn(r )}r jn is crucial for a derivation of the amplitudes of
the moments of the velocity difference.@S1063-651X~98!10202-7#

PACS number~s!: 47.27.2i
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INTRODUCTION

Intermittency of turbulence, not contained in the Kolmo
orov theory, is one of the most intriguing and mysterio
phenomena of continuum mechanics. Experimentally
tected in the early 1960s, this feature of high-Reynol
number turbulent flows still remains a major challenge
turbulence theory. Landau’s 1942 remark@1# that the large-
scale fluctuations of turbulence production in the ener
containing range can invalidate the Kolmogorov theory w
one of the motivations for construction of various ‘‘cascad
models attempting to explain this phenomenon, manifes
in the anomalous scaling of the structure functionsSn(r )
5^@u(x1r )2u(x)#n&[^Un&}Anr jn, with the exponents
jnÞn/3. The first model of this kind was proposed by Ko
mogorov himself in 1962@2#. Recently, some important ana
lytic advances, leading to evaluation of both scaling ex
nentsjn and the amplitudesAn , were made for the problem
of the passive scalar, advected by a random velocity field
the random-force-driven Burgers turbulence@3–7#. First, it
was proposed by Kraichnan@3# that scalar structure function
^@T(x)2T(x1r )#2n& can be solutions of homogeneous d
ferential equations, thus leading to nontrivial values of
exponentsjn which could not be found from dimensiona
considerations. Then Gawedzki and Kupiainen@4#, Chertkov
et al. @5,6#, and Shraiman and Siggia@7# showed that, in-
deed, it was the zero modes which were responsible for
anomalous scaling in some limiting cases of the passive
lar problem. Similar results were arrived at in many of t
following studies@8–10#.

Polyakov’s theory of the large-scale random-force-driv
Burgers turbulence@11# was based on the assumption th
weak small-scale velocity fluctuationsuu(x1r )2u(x)u
!urms andr !L, whereL is the energy input scale#, obey the
571063-651X/98/57~2!/1737~15!/$15.00
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Galilean invariant dynamic equations, meaning that the in
gral scale and the random-force-induced single-pointurms
cannot enter the resulting expression for the probability d
sity having the scale-invariant form:

P~U,r !<
1

r
FS U

r D . ~1!

WhenU>urms Galilean invariance~GI!, even of the small-
scale dynamics can be violated, and the probability den
function ~PDF! scales withU/urms, leading to saturation of
the scaling exponentsjn51 for n.nc51. This general fea-
ture of Burgers turbulence was confirmed by numerical
periments in which turbulence was generated by differ
random forces generating various scaling exponentsjn<nc
@12–14#. It was shown in Refs.@12–14# that the value of the
critical moment numbernc depended on the forcing functio
spectrum. Still, atn.nc all Sn}r , indicating that decorrela-
tion introduced by the noise was too weak to prevent
shock formation. Recently Chertkov, Kolokolov, and Ve
gassola@15# obtained a similar structure of the theory co
sidering a one-dimensional problem of a passive scalar
vected by a random velocity field. In the limitr→0 their
PDF

P~U,r !}
1

r

e2U2/urms
2

U21r 2 ,

where, to simplify notation, we have set the values of
numerical constants equal to unity. Similar result was a
obtained in the work of Ref.@16# on the large-scale-driven
Burgers turbulence in when space dimensionalityD→`.

Polyakov’s idea@11# about the role of violation of Gal-
ilean invariance in the generation of anomalous scaling re
nates with Landau’s remark about the important influence
1737 © 1998 The American Physical Society
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1738 57VICTOR YAKHOT
the large-scale fluctuations on the small-scale dynamics@1#.
In this paper we will attempt to combine the zero-mode a
GI breakdown ideologies to derive equations governing
probability density function of the longitudinal velocity dif
ferences in strong turbulence. We would like to reiterate t
two measurements in the same turbulent flow performed
the laboratory and in the moving frame of reference~train or
ship! must give the same answers. The ‘‘violation of Ga
ilean invariance’’ is understood hereafter only in a limit
Polyakov sense, as a possibility ofurms entering the probabil-
ity density of velocity difference. It will be shown that th
details of the large-scale turbulence production mechan
are important, leading to the nonuniversality of the proba
ity density function of the velocity difference. The resu
will be compared with experimental data.

FORMULATION OF THE PROBLEM

Turbulence in Nature results from hydrodynamic ins
bilities of various laminar low-Reynolds-number flows. Th
transition phenomena are not universal, depending on ge
etry, external fields, etc., and, at the present time, canno
accounted for by turbulence theory. Hoping for some univ
sality of the small-scale velocity fluctuations in the inert
range, it is customary to develop a theory of turbulen
driven at large scales by some terms in the Navier-Sto
equations, that one can treat theoretically. Usually, th
large-scale forcing terms are assumed to be irrelevant in
inertial range. Below, we discuss three models correspon
to different mechanisms of turbulence generation. First le
consider Navier-Stokes equations on an infinite domain:

vt1v•“v5f2“p1n“

2v,

“•v50. ~2!

The Gaussian large-scale forcingf is defined by the two-
point correlation function

^ f i~x,t ! f j~x8,t8!&5Pi j k~ ux2x8u!d~ t2t8!, ~3!

where the projection operatorPi j ensures the incompressibi
ity of the solution. The force is assumed to be acting in
interval of wave numbers 1/V1/3!k0'1/L@kd , where V
→` andh51/kd are the volume of the system and dissip
tion scale, respectively. In other words, the forcing spectr
is assumed to decrease very rapidly outside the intervk
'k0 . In the limit k!k0 the system is in thermodynami
equilibrium and is described by the Gaussian statistics
energy spectrumE(k)}k2 @17#. Thus the order of the limits
as follows.

~1! First we set the large value ofk0 , and thenn→0, so
that kd /k0→`. In the case of thed-correlated forcing func-
tion ~3! the source-related contribution to the equation for
two-point correlation function can be written in a ve
simple way:

W5^v i~x,t ! f i~x8,t !&}k~ ux2x8u!

~2! Often, in real-life experimental situations, when turb
lence is generated in the vicinity of the boundaries~wall
flows!, nozzles~jets!, and bodies~wakes! and later trans-
ported into the bulk of the flow where the measurements t
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place, model~1!–~3! is not valid. In this case a better de
scription is given by the initial value problem, taking int
account the turbulence decay during this delay time. T
will be also discussed in what follows.

~3! In the third class of the flows, turbulence is produc
by a large-scale shear. Then, introducing the so called R
nolds decomposition

U5V1v,

where v(^v&50) is the fluctuation from the time
independent mean velocity^U&[V, and the equation for ve
locity fluctuationsv is given by Eq.~1! with f50 and the
turbulence production term on the right side@1#,

~v•“ !V.

The force-free Navier-Stokes equations are invariant
der rotations, space-time translations, parity, and sca
transformations. They are also invariant under Galile
transformationsx→x1Vt and v→v1V, where V is the
constant velocity vector of the moving frame. Boundary co
ditions and forcing can violate some or all of the symmetr
of Eqs. ~1!. It is, however, usually assumed that, in hig
Reynolds-number flows withn→0, all symmetries of the
Navier-Stokes~even Euler! equations are restored in th
limit r→0 andr @h, whereh is the dissipation scale wher
the viscous effects become important. This means, am
other consequences, that in this limit the root-mean-squ
velocity fluctuationsurms5A^v2&, not invariant under the
constant shift, cannot enter the relations describing mom
of velocity differences. If all this is correct, then the effectiv
equations for the inertial-range velocity correlation functio
must have the symmetries of the original Euler equatio
For many years this assumption was the basis of all tur
lence theories. Based on the recent understanding of Bur
turbulence@11–14#, some of the constraints on the allowe
turbulence theories will be relaxed in what follows.

We are interested in the multipoint velocity correlatio
functions

Cn~x1,x2,...xn!5^v i1~x1!v i2~x2!...v in~xn!&,

and longitudinal structure functions

Sn~r !5^@u~x1r !2u~x!#n&[^~Du!n&,

whereu(x) is thex component of the three-dimensional v
locity field andr is the displacement in the direction of thex
axis.

In 1941 Kolmogorov, considering decaying turbulenc
derived an equation forS3(r ) valid whenr→0:

1

r 4

]r 4S3~r !

]r
524E1

6n

r 4

]2S2~r !

]r 2 , ~4!

leading to the famous Kolmogorov45 law: in the limit n
→0 and atL@r @h, h is the dissipation scale of turbulenc
defined as

nSrr ~h!5O~1!.
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57 1739PROBABILITY DENSITY AND SCALING EXPONENTS . . .
The third-order structure function in the inertial rangeL@r
@h is given by a4

5 law;

S3~r !52 4
5Er .

In fact, expression~4! is an approximation, neglectin
small contributions from time derivatives and source fun
tions, valid in the limitr→0. In general, it must be modifie
to include the forcing function

S3~r !52 4
5Er 1O@r ~Du!~D f !#. ~5!

We can see that for ad-function-correlated large-scale forc
ing function k(r )5k(0)2gr 2, the subleading contribution
to Kolmogorov 4

5 law in the inertial ranger→0 is O(r 3). In
a more general situation evaluation of the correction is no
simple.

In case of decaying turbulence the subleading contri
tion to Eq.~5! is

OS r
]S2~r !

]t D , ~6!

while when turbulence is produced by the large-scale sh
it is somewhat different@18#:

OS r
]V

]x
S2~r ! D .

Whenr is small, these terms can be neglected. However
will be shown below, they must be accounted for since
procedure of evaluation of the probability densityP(Du,r )
involves matching of the inertial range and large-scale so
tions.

Derivation of Eqs.~4!–~6! is based on the fact that, due
the incompressibility condition, all transverse correlati
functions can be expressed in terms of the longitudinal o
leading to the closed equations. One can say that in a
limited sense the procedure projects the original thr
dimensional problem onto a one-dimensional one. Reg
fully, due to the coupling between different components
the velocity field, caused by the pressure terms, we can
rigorously derive similar expressions for the high-order m
mentsSn(r ). The second difficulty is in the presence of th
dissipation anomaly~see below!. Still, we can attempt to use
some general features of the equations of motion and de
the scaling properties and general form of the probabi
density functionP(Du,r ).

EQUATIONS FOR THE PROBABILITY DENSITY

One can introduce a generating function

Z5^e( ili•v~xi!&,

where the vectorsxi define positions of the points denoted b
the numbers 1, i ,N. Using the incompressibility condition
the equation forZ can be formally written

]Z

]t
1

]2Z

]l i ,g]xi ,g
5I f1I p1D, ~7!
-
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whereI f , I p , andD are related to the forcing, pressure, a
dissipation contributions to the Navier-Stokes equation~see
below!. Although the advection contributions are accurate
accounted for in this equation, it is not closed due to
pressure and dissipation terms. The latter can be treated
ing Polyakov’s operator product expansion ideas@11#, while
the former presents an additional difficulty to be dealt wi
In what follows we will be mainly interested in the momen
of the two-point velocity differences, which in homogeneo
and isotropic turbulence can depend only on the abso
values of two vectors~velocity differencev(x8)2v(x) and
displacementr[x82x! and the angleu between them with
u5p/2 andu50 corresponding to transverse and longitu
nal structure functions, respectively. In spherical coordina
the explicitly written advective terms in Eq.~7! involve

OS ]2Z

]l]r D , OS 1

r

]Z

]l D , OS 1

l

]Z

]r D , OS Z

lr D , ~8!

and various trigonometric functions and angular different
tions. The theory of the longitudinal structure functions, p
sented below, is based on the assumption, correct for
third order momentS3(r ) @see Eq.~4!#, that the angular de-
pendence can be accounted for in a simple way, and,
consequence, that there exists an equation foru50. This
assumption is supported by the following observations. I
easy to show that in the inertial range the second-order st
ture function

S2~r ,u!5
21j2

2
DLL~r ! S 12

j2

21j2
cos2~u! D ,

with DLL(r )5^@u(x)2u(x1r )#2&. A more involved rela-
tion can be written for the fourth-order moment@16#

S4~r ,u!5DLLLL~r !cos4~u!23DLLNN~r !sin2~2u!

1DNNNN~r !sin2~u!

where DLLNN5^@v(x)2v(x1r )#2@u(x)2u(x1r )#2&, and
v andu are the components of the velocity field perpendic
lar and parallel to thex axis, respectively. As one can easi
deduce from the angular dependence, the functionsDLLLL(r )
and DNNNN(r ) denote longitudinal and transverse structu
functions, respectively. In the limitu→0,

S4~r ,u!'DLLLL~r !cos4~u!1O~u2!,

rapidly approachingS4(r ,u50)5DLLLL(r )[S4(r ). Based
on the above expressions, we conclude that, as in the th
of multidimensional Burgers turbulence@16#, where the
probability density of velocity difference can be represen
as P(U,r ,u)'P„U,r cos(u)…; here in the limit u→0 the
mixing of the longitudinal and transverse correlation fun
tions is very weak@O(u2)#. As a consequence, we assum
that the closed equation for the probability density of lon
tudinal velocity differences exist. Generalization of th
theory to the case of an arbitrary~not small! angleu is the
subject of an ongoing study.

We selectN points xi with 0, i ,N on the x axis and
introduce the longitudinal generating function for th
N-point correlation function,
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1740 57VICTOR YAKHOT
ZN5^el i u~xi !&, ~9!

wherel j5 ik j . The equation of motion forZN can be for-
mally derived~we neglect the subscriptN in what follows!:

Zt5(
j

l j^e
l i u~xi !ut~xj !&.

Substituting the Navier-Stokes equations into this relat
gives

Zt5(
j

l j K el i u~xi !F2u~xj !
]u~xj !

]xj
1 f x~xj !G L 1I T1I p1D,

~10!

where f x(xj ) is the x component of the forcing,xj is the
coordinate of thej th point, and]/]xj , is the partial deriva-
tive in the x direction only. The summation in expressio
~10! is over the positionsxj and over the Greek subscrip
a51 and 2, denoting the components of the velocity field
the directions perpendicular to thex axis. The life-
threatening terms in Eq.~10! are

I T5(
j

l j K el i u~xi !F2va~xj !
]u~xj !

]xa j
G L , ~11!

I p52(
j

l j K el i u~xi !
]p~xj !

]xj
L , ~12!

and

D5n(
j

l j K el i u~xi !
]2u~xj !

]xj
2 L . ~13!

The theoretical and numerical work@16# on the multidi-
mensional Burgers equation led to the probability dens
and moments of velocity difference basically independent
the space dimensionality: the momentsSn<1(r )}r n, while
Sn>1}r . This is an indication that the shock productio
dominated by the longitudinal components of the nonline
ity ui] iui ~no summation over the subscripti !, prevails over
the processes coming from the mixed terms of the k
uj] jui which can be neglected. In other words the multi
mensional Burgers equation is well approximated by the s
tem of weakly interacting one-dimensional~1D! equations
acting along various coordinate axis. It is clear that geome
of the objects generated by this system is very complex.
recent paper by Gurarie and Migdal@16#, dealing with the
two- and three-dimensional Burgers turbulence, introdu
an angleu between velocity difference and displaceme
vectorsv(x1r )2v(x) andr , respectively, and using the in
stanton formulation, derived an expression for the genera
function ~see below! Z2 in the form Z2
}exp„(lr )g f (cosu)…, with g5 3

2 , independently on space d
mensionality andl5ulu andr 5ur u. The calculated function
f „cos(u)… ensured correct angular dependence of multidim
sional structure functions. Whenu50, the derived expres
sion basically recovered the one-dimensional Polyakov’s
sult. This result tells us that it is the projection of the veloc
field on the direction of the displacement vectorr that pro-
duces dynamically significant contribution to the multid
n

y
n
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d
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s-

ry
e

d
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g

-

-

mensional structure functions, and that the longitudi
structure functions in three-dimensional Burgers turbule
are close to those in the 1D turbulence. Indeed, numer
simulations@16# of the three-dimensional Burgers turbulen
revealed a very complex velocity field with the structu
functionsSn(r ) very close to the ones, previously obtaine
in one-dimensional simulations. The possible smallness
the interaction between different components of the adv
tive terms is only part of the story. The pressure contribut
I p leads to effective energy redistribution between com
nents of the velocity field, and plays an important part in t
Navier-Stokes dynamics. The pressure effects are nonlo
instantaneously transporting information between differe
even very remote, parts of the flow. That is why the effe
coming from the boundary conditions and large-scale for
cannot be neglected even in description of the small-sc
phenomena. The possible spontaneous breakdown of
ilean invariance is the central assumption of this work.

Equation~10! can be rewritten as

Zt5( l il jk~ uxi2xj u!Z2(
j

F ]2Z

]l j]xj
2

1

l j

]Z

]xj
G

1I T1I p1D, ~14!

where the large-scale Gaussian random force is define
the limit r→0 by the correlation functionk(r )5k(0)
2gr 2. Approaching the integral scaleL, the force correla-
tion functionk(r ) rapidly goes to zero. We will see that th
equation for the probability density of the velocity differen
P(U,r ), whereU5u(x1r )2u(x) contains the combination
k(0)2k(r ) which is large at the large scalesr→L. That is
why the large-scale dynamics, dominated by the forc
term, show close to Gaussian behavior of at least the first
momentsSn .

Evaluation of I T , I p , and D in Eq. ~14! is a difficult
problem, and we have to make some assumptions. It is s
from the definition of the generating functionZN that when
two points merge, i.e.,xi→xj the N-point generating func-
tion becomes the (N21)-point generating function withl
5l i1l j . This means that if, for example, the equation f
Z2 contains the two-point sum

wS l1 ,u~x1!,x1 ,
]

]x1
D Z21wS l2 ,u~x2!,x2 ,

]

]x2
D Z2

→a~l,y!wS l,u~x1!,x1 ,
]

]x1
DZ1 .

Herew depends on the structure of the equation of moti
and y5uxi2xj u→0. We assume that in this limit the un
known functiona(l,0) is finite. Not all functionsw satisfy
this equation. For example,w5l andw5l(]/]l) do. The
functions w can also include space derivatives. Combin
with the general symmetry properties of Eq.~14!, we can
narrow the class of possible solutions and derive equation
the probability density. It follows from the Navier-Stoke
equations that the theory must be invariant under transfor
tion: l→2l andxj→2xj . In what follows we will adopt
Polyakov’s result that the main effect of the longitudinal p
of the dissipation termD is a renormalization of the coeffi
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57 1741PROBABILITY DENSITY AND SCALING EXPONENTS . . .
cient in front of theO(1/l j ) terms on the right side of Eq
~14!. Based on the above considerations, we can write
models for theN-point generation function, corresponding
the different mechanisms of turbulence production int
duced above~see below!:

Zt5( l il jK~ uxi2xj u!Z2(
j

F ]2Z

]l j]xj
2

b

l j

]Z

]xj
G

1C( l j

]

]l j
Z1I T1I p1D8 ~15!

for cases 2 and 3, and

Zt5( l il jk~ uxi2xj u!Z2(
j

F ]2Z

]l j]xj
2

b

l j

]Z

]xj
G

1I T1I p1D8 ~16!

to describe turbulence generated by thed-function-correlated
forcing ~3!. HereD8 involves only ‘‘transverse’’ component
of theD term defined below. TheO@l(]Z/]l)# term in Eq.
~15! comes from theO(v) turbulence production, while
K(r )5K(0)2br 2, leading to the negligibly smallO(r 2)
subleading contributions to the velocity difference struct
functions, ensures the close-to-Gaussian single-point p
ability density. Equations~15! and ~16! violate neither the
‘‘fusion rules’’ introduced above nor general symmetries
the Navier-Stokes equations. By dimensionality, the coe
cient C/k(0)5O(1/urms

2 ). The O@k(r )# term in Eq. ~16!,
stems from the forcing function~3!. Below, we will discuss
the two cases in detail.

If one is interested in a single-point probability densi
Eq. ~15! is to be solved for allxj5x andl5S jl j . All space
derivatives disappear due to homogeneity of turbulence,
we have an expected result@17#

P~u!5S 2

p D 1/2

e2u2/2urms
2

.

This fixes the value of the coefficientC. Thus, Eq.~15!
yields a Gaussian distribution of the single-point veloc
field. This result will be used below as a matching conditi
for the probability densityP(U,r ) in the large-scale limitr
→L. The experimentally observed single-point probabil
densityP(u) is very close to but not equal to the Gaussi
deviating from it at the large values of velocity fluctuatio
u@urms. The theory, developed here is applicable to a
expression forP(u), not only to the Gaussian. Still, th
Gaussian, which will be used below to compare the theo
ical predictions with the data, is a very good approximati

We need an equation for the generating functionZ2 with
l11l250, giving

Z2~l,r !5^el@u~x1r !2u~x!#[^elU&. ~17!

In a statistically steady state
o

-

e
b-

f
-

,

nd

y

t-
.

2
]2Z2

]l]r
2

2b

l

]Z2

]r
5l2@K~0!2K~ uxi2xj u!#Z21I T1I p1D8

2
urms

L
l

]Z2

]l
, ~18!

where

I T5l^@va~x2!]x2 ,au~x2!2va~x1!]x1 ,au~x1!#el@u~2!2u~1!#&

[l^ i TelU&,

I p5 K lF]p~x2!

]x2
2

]p~x1!

]x1
Gel@u~2!2u~1!#L [l^ i pelU&,

and

D85ln^@]x2a
2 u~x2!2]x1a

2 u~x1!#e
l@u~2!2u~1!#&[l^d8elU&.

~19!

The point merging inI T andI p must be regular, while the
same procedure in the dissipation termD8 involves diver-
gences which are canceled by viscosityv→0. As was
pointed out in@11# the longitudinal,O@]x

2u(x)#, components
of theD term result in the renormalization of the coefficie
in front of the O(1/l) contribution to the right side of Eq
~14!. We are still left with the remainingO@]a

2u(x)# piece of
the dissipation anomaly, pressure termsI p , and theI T con-
tributions, mixing all components of the velocity field. Ha
ing in mind the general fusion rules, considered above,
the fact that the equation is invariant under transformat
l→2l andr→2r we, not being concerned with preserv
tion of Galilean invariance, write the equation forZ2 corre-
sponding to Eq.~15!:

]2Z2

]l]r
2

B0

l

]Z2

]r
5

A

r

]Z2

]l
2

urms

L
l

]Z2

]l
. ~20!

Equation~20! includes the above-derived expression for t
coefficientC and the unknown parametersB0 and A to be
determined from the theory. The characteristic time in E
~20!, T'L/urms5O(1), is independent of the displaceme
r . A natural generalization of this model is Eq.~20!, with the
last term on the right side:

1

T~r !
l

]Z2

]l
,

with T(r )}r jt, with the exponentjt depending on the phys
ics of the problem. In Kolomogorov turbulence,jt'

2
3 .

The model corresponding to Eq.~16! is

]2Z2

]l]r
2

B0

l

]Z2

]r
5

A

r

]Z2

]l
1gr 2l2Z, ~21!

where theO(r 2) contribution is to be kept. Equations~20!
and ~21! are based on the assumption that the dynamic
of the pressure and dissipation terms is in the renormal
tion of the coefficients in front of the already-present adv
tive contributions~8! to Eq. ~7!. Similar assumption was
fruitful in the theory of Burgers turbulence@11#. Except for
the last terms in the right side, these equations are the s
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as the one in Polyakov’s theory of Burgers turbulence, w
the B0 term simply renormalizing part of the advection e
fects, present in the original equations. The meaning of thA
term will be discussed in detail below. It will be shown th
it is not only responsible for prevention of the shock form
tion, but it also makes the weak (uUu!urms) structures of the
Navier-Stokes dynamics much stronger than their coun
parts of Burgers turbulence. It is clear that, due to the hom
geneity of the turbulence, all space derivatives and relateA
contributions go to zero whenr>L.

In the one-dimensional case the dissipation anomalyD,
discussed in detail by Polyakov, leads only to a relativ
small modification of a corresponding coefficient. It will b
shown that in case of three-dimensional turbulenceB0'
220, part of which is to be attributed to a large press
effect preventing the shock formation. In the resulting d
namic equations~20! and~21! the contributions fromD and
I p are mixed and the origins of each term, hidden in num
cal values of the coefficientsb, B0, andA, are not easy to
establish. Equation~20!, explicitly involving the single point
urms, is suited for description of the generating function
both r→0 andr→L limits. In the inertial range, where th
displacementr is small, theO(urms) and the forcing contri-
butions can be neglected. They are important, providing
large-scale Gaussian matching constraint needed for dete
nation of the amplitudes of the structure functionsSn . Thus
Eqs.~20! and~21!, describing the correlation functions in th
inertial range, differ by the last of the right-hand-side ter
reflecting the details of the large-scale turbulence genera
processes. It will be shown below that this difference is
sponsible for the nonuniversality of the probability dens
function of the velocity difference. In the limitr→0 the
equation for the probability density is derived readily fro
Eqs.~20! and ~21!:

2
]

]U
U

]P

]r
2B0

]P

]r
52

A

r

]

]U
UP1

urms

L

]2

]U2 UP,

~22!

2
]

]U
U

]P

]r
2B0

]P

]r
52

A

r

]

]U
UP2gr 2

]3Z

]U3 . ~23!

PROPERTIES OF THE SOLUTION

Multiplying Eq. ~22! by Un, and assuming the existenc
of all moments, leads to

]Sn

]r
5

An

n1B

Sn

r
1

urms

L

n~n21!

n1B
Sn21~r !, ~24!

whereB52B0.0. Equation~24! is to be solved under con
straint ~4!, which is the result of the energy conservati
inherent to the Navier-Stokes equations. This is the con
quence of the renormalization ideology leading to Eq.~24!,
which is a model, not rigorously derived from Eqs.~1!–~3!,
but based on some general symmetries of the Navier-St
equations. That is why the45 law comes out of Eq.~24! only
for a particular set of parameters. In a ‘‘final’’ theory th
rigorous equation forSn(r ) must automatically produce th
h
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e
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correct result forS3(r ). Neglecting the last term in the righ
side of Eq.~24! ~see below! the solution forS3(r ) in the
limit r→0 is derived readily:

S35Nr3A/~31B!

This means that the coefficientA5(31B)/3 andN52 4
5E.

Seeking the solution in the formSn}r jn, we obtain

jn5
~31B!n

3~n1B!
. ~25!

The normal Kolmogorov scalingjn5n/3, corresponding to
the no-intermittency case is achieved in the limitB→`. The
maximum, Burgers-like, intermittency with all exponen
jn51 due to the tanhx shocks is recovered whenB50.

Deriving Eq.~25!, the contribution of the order

urms

L

n~n21!Sn21~r !

n1B

was neglected in comparison with theO@nSn /(n1B)r #
terms. Substituting the expression forSn5Anr jn, with jn
from Eq. ~22!, gives a general solution

Sn5Anr jn1
urms

L
An21

n~n21!

n1B

r jn2111

jn212jn11
. ~26!

The coefficientsAn will be derived below. Expression
~26! shows that due to the presence of theO(r jn2111) sub-
dominant contributions, the experimental determination
the scaling exponents is a difficult task, and that proper
counting for it can lead to substantial broadening of the
ertial range and a more accurate determination of the num
cal values of the scaling exponentsjn . In addition, it
establishes the relation between the amplitudes of the o
and even-order moments.

By definition of the integral scale, adopted in this wor
the third-order momentS3(r 5L)50. Sinceurms'(EL)1/3,
expressions~25! and ~26! give

A352
4

5
529A2

B12

~B13!2 ,

which, taken in accord with the closures derived from va
ous renormalized perturbation expansionsA2'2 leads toB
'20 and

jn5
23

3

n

n120
. ~27!

The calculated values of the exponentsj1/550.0759,j1/4
50.0946,j1/250.187,j150.365,j250.696,j451.278,j5
51.533, j651.769, j751.988, j852.190, j952.379, and
j1052.555 are indistinguishable from the best available
perimental data. One has to keep in mind that the value
the parameterB can be nonuniversal, slightly varying from
flow to flow. This can lead to some nonuniversality of th
exponents. The comparison of the magnitudes of the ex
nents, given by Eq.~27!, with the outcome of numerica
simulations by Chen@19#, is presented on Fig. 1. Expressio
~27! predicts a saturation of the values of the exponentsjn at
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j`' 20
3 in agreement with some general ideas based on

path integral representation of the solution of the pass
scalar problem Chertkov@20#.

The expression forSn(r ) corresponding to model~23! is

Sn5Anr jn1gAn23

n~n21!~n22!

n1B

r 31jn23

31jn232jn
.

~28!

It follows from Eq. ~28! that

S3~r !52
4

5
r 1O~r 3!,

in accord with an exact result.
One has to solve the equation for the probability dens

P(U,r ).0 going to Gaussian in the limitr /L→1. The equa-
tion is

]

]U
U

]P

]r
2B

]P

]r
5

1

r S 31B

3 D ]

]U
UP. ~29!

It may be somewhat easier to deal with the equation for
generating functionZ2 :

]2Z2

]l]r
2

B

l

]Z2

]r
52

1

r S 31B

3 D ]Z2

]l
.

The structure of the solution is clear from the scaling of
moments derived above:

Z25(
0

`

~21!nAnlnr @~31B!n#/@3~B1n!#

with as yet unknown amplitudesAn.0 which will be evalu-
ated below. The most important outcome of this express
is the fact that the odd-order momentsS2n11,0, which
means that the PDFP(U,r )ÞP(2U,r ). It is clear that
P(U,r )5P(2U,2r ) in accord with the symmetry of the
Navier-Stokes equations.

To evaluate the probability density function we need
match the inertial range PDF with either the energy conta

FIG. 1. Comparison of the calculated scaling exponents@for-
mula ~27!# with the results of numerical simulations by Chen@19#.
e
e

y

e

e

n

-

ing or dissipation range probability density functions. Bas
on the result for the single-point PDF@17#, one has to seek
the solution to Eq.~25! that becomes very close to Gaussi
at the scales larger than some integral scaleL. This condition
can serve as a definition of the integral scale. In reality,
integral scale is never much smaller than the size of
system. The experimental data show that at large scales
PDF is close to Gaussian, with some small deviations see
the far tails whereU@urms. Based on the data we can safe
assume that at the large scales the first few~10–20! moments
are very close to their Gaussian values. The nonzero valu
the odd-order momentsS2n11(r ), with n>1, implies the
asymmetry ofP(U,r ). However, this asymmetry is ver
small with S2n11(r )/s2n11(r )!1, where s2n11(r )
5^uu(x)2u(x1r )u2n11& is often measured by the exper
mentalists. It has been shown@21# that up ton'5 this ratio
is in the range of'0.1, and that the experimentally observ
PDF can be made symmetric by a signal-filtering procedu
leading to a near vanishing of the odd-order moments. T
procedure left the even-order moments unchanged, indi
ing that the PDF asymmetry only weakly influences t
even-order moments. The data will be presented below.

Now we setL51 and, neglecting all odd-order moment
calculate the PDF directly from the generating function:

Pe~U,r !5
2

p E
0

`

cos~kU!f~k,r !, ~30!

with

f~k,r !511 (
n51

`

~21!nA2
n~2n21!!! r jn

k2n

2n!
. ~31!

We see that this expression givesS2n5A2
n(2n21)!! r jn

leading to the desired Gaussian values atr 5L51. The same
result P(U,r )}exp(2U2/2r2/3) is recovered in the limitB
→`.

In the opposite limitB→0, the probability density tends
to

Pe~U,r !5~12r !d~U !1r S 2

p D 1/2

e2U2/2urms
2

,

giving all jn51. This corresponds to Burgers turbulence
the GI broken range@11#. This result is very close to the
outcome of the theory of the Burgers turbulence in the lim
of space dimensionalityD→` @16#, predicting P(U,r )
5(12r )d(U2r )1rc@U2r /(urms)#. This fact is an indica-
tion that the Galilean invariance-breaking terms in the eq
tions of motion, obtained in this work, are quite close to t
truth. It is clear that to reproduce the shiftedd function of
Ref. @16# we have to abandon the simplification of treatin
the PDF as an even function ofU.

To uncover the inner structure of thed function, the data
must be presented in coordinatesU/r a with a'0.365 ~see
the figures below!. We can compare the prediction given b
Eq. ~31! with the experimental data on

C2n~r !5
S2n~r !

S2
n~r !

5~2n21!!! r j2n2nj2, ~32!
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1744 57VICTOR YAKHOT
where alljn are given by Eq.~22!. Sreenivasanet al. @21#
measuredC2n(r ) in the low-Reynolds-number experime
(Rl'200) conducted in the laboratory boundary layer. T
results of Ref.@21# for r'0.120.2 are

C4'3.6, C6'24.8, C8'261, C10'3770,

which are to be compared with our predictionsr 50.2:

C453.16, C6525.05, C85272, C1053256.

The intermittency grows strongly with decrease of the d
placementr . For example: forr 50.1 the relations derived in
the present paper give

C453.42, C6531.26, C85412, C1056184.

These numbers agree extremely well with the results of
merical simulations by Chen@22#, who was able to produce
the data set atRl5200 consisting of a few billion points
The somewhat lower values ofC10 obtained in the physica
experiments can be attributed to the insufficient statistics
the real-life data set. Recent high-Reynolds-number exp
ments (Rl'15000)@23# produced similar results for the mo

FIG. 2. Probability density of velocity differencesF(x)
5r 1/3P(U/r 1/3) vs x5U/r 1/3.

FIG. 3. Probability densityP(U,r ) as a function ofU/urms.
e

-

-

f
ri-

mentsSn with n,6. The comparison between theory an
experiment is somewhat difficult due to an uncertainty in
theoretically needed ratior /L whereL is a poorly defined
integral scale of turbulence. The inertial range prediction
this paperC4'3r 20.114agrees well with the data obtained
the high-Reynolds-number experiments (Rl'1500– 2500)
in the planetary boundary layer@21#.

The evaluated probability density functions are compa
with the outcome of the measurements of Noullezet al. @24#
in Figs. 2–4. The high quality experimental data on t
transverse structure functions were obtained using real-s
measurements in the air jet. Thus, for the time being, co
paring theory with experiment here we assume that the p
ability density of the longitudinal velocity differences has t
same shape as the one of transverse velocity differences.
quantitative agreement for1

4 ,r /L<1 is very good. We were
not able to plotP(U,r ) for very small values of the displace
mentr , but the data in Fig. 4 show the tendency of the P
to thed function in the limitr→0 in accord with the analytic
asymptotics. Figure 2 presents the same curves, plotted in
coordinatesU/r 1/3. One can see increasing deviations fro
the Gaussian atr /L51 with decrease of the displacementr .
It is clear from the figure that the probability density cann
be represented in scale-invariant form~1!. This is the mani-
festation of the intermittency. The calculation was perform
usingMATHEMATICA ™, which failed to produce the genera
tion functionf(k,r ) with k.5. The information onf(k,r )
with 0,k<5 was sufficient to calculateP(U,r ), with an
accuracy'1 – 2 % in the range of variation 0,U,3 – 4 and
1
4 ,r ,1. The fact that atr 51 the PDF must be Gaussia
serves as a good test of the quality of the numerical pro
dure.

Using the derived expression forZ2 , one can easily
evaluate the correct asymmetric probability densityP(U,r )
giving the values of the odd-order moments in agreem
with experimental data. All one has to do is to introduce
term involving the sin contribution to the Fourier-transfor
in Eqs. ~26! and ~27!, generating nonzero odd-order mo
ments. Demanding thatS2n11(L)50, we have, from Eq.
~26!,

FIG. 4. Measured PDF’s of transverse structure functions@24#
for a few values of the displacementr 53600, 900, and 28mm.
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A2n11'2
urms

~EL !1/3

2n~2n11!A2n

~2n111B!~j2n2j2n11!
,

valid for n.1. Settingurms'(EL)1/3 and takingA2'2, we
obtain

A3'20.8, A5'23.0, A7'650.

In the case of the large-scale-driven turbulence, the
pression forA2n11 is derived in a similar manner:

A2n1152gA2n22

2n~2n11!~2n21!

~2n111B!~31j2n222j2n11!
.

This relation contains two unknownsg andB. Assuming
universality of the exponents, implyingB520, we find from
the relation forA352 4

5 thatg'6. In the correct dimensiona
units g'6E. This will be important below for the quantita
tive comparison of theoretical predictions with experimen
data. This result has some interesting consequences. Kee
the amplitudesA2n equal to the ones derived above,

A5'14, A7'373, A9'28500,

we see that, even if the exponents are universal, the am
tudes of the moments are not, meaning that the shape o
probability density can vary from flow to flow. It is interes
ing that to experimentally observe this effect one has to m
sure high-order moments since the first few structure fu
tions in different flows, considered here, seem to be clo
Hereafter we will be mainly interested in model~20!, which
is more closely related to physical experiments.

The expression

f1~k,r !5(
1

`

A2n11r j2n11
~2k!2n11

~2n11!!
~33!

is to be substituted into the integral

P05
1

p E
2`

`

sin~kU!f1~k,r !dk ~34!

to give a total asymmetric PDFP(U,r )5Pe(U,r )
1P0(U,r ). A very accurate parametrization of the cent
part of the PDF, corresponding to not-too-large values ofU,
illustrating appearance of the asymmetric PDF, is

f1~k,r !52 2
15 rk3f~k,r !, ~35!

giving

P~U,r !5Pe~U,r !1P0~U,r !5Pe~U,r !1
2r

15

]3Pe~U,r !

]U3 .

~36!

This expression is approximate, and serves only to illust
the mechanism of appearance of the experimentally obse
asymmetric PDFP(U,r ). The central part of the probability
density can can be very accurately parametrized by form
~36!, with

Pe~U,r !5
N

r a e2x tanh~x/a! ~37!
x-

l
ing

li-
he

a-
-

e.

l

te
ed
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whereN is a normalization constant, andx'U/r a, with, as
above,a'0.365. The parametera'2 – 4. Expressions~31!
and ~32! give a very good approximation for the momen
Sn(r ) with n<10. For example,A251.9– 2.6,A3520.8,
A4520– 28, A55215.4– 21, A6'657, A7'2785, etc.,
very close to the first few amplitudesAn , calculated above
Figures 5 and 6 show the probability density functi
P(U,r ) given by Eqs.~36! and ~37!.

The theory can be approximately generalized to the c
of correct anomalous exponents

Rn5
Sn

S2
n/2'

An

A2
n/2 r jn2~nj2/2!. ~38!

Expression~38! gives S3 , in accord with the Kolmogorov
relation. Forr'0.1 andA2'2, we deriveR3520.31 and
R5524.2.

To assess internal consistency of the theory and un
stand the role and meaning of theA contribution to Eq.~20!,
we write a formally exact equation for the two-point gene
tion function:

FIG. 5. Approximate parametrization of the PDFr aP(U,r ) vs
x5U/r a using formula~37!.

FIG. 6. Asymmetric PDFP(U,r ) given by Eqs.~36! and ~37!.
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2
]2Z2

]l]r
2

2

l

]Z2

]r
5l2@k~0!2k~ uxi2xj u!#Z21I T1I p1D.

~39!

The equation for the probability densityP(U,r ) can also
be formally written,

]

]U
U

]P

]r
1

]P

]r
52

1

2

]2

]U2 @T~U,r !P~U,r !#, ~40!

where

T~U,r !5^ i p1 i T1duU& ~41!

is the conditional expectation value ofT5 i p1 i T1d for a
fixed value of velocity difference U. Here d5d8
1n@ux8x8(x8)2uxx(x)#. The formulation of probability den-
sity functions in terms of conditional dissipation and produ
tion was introduced in Refs.@25,26#, and became a subject o
intense investigations. Three-dimensional turbulence pr
lem is somewhat different since there is no way one
separate various contributions toT(U,r ). Indeed, we are
dealing here with the projection of a three-dimensional
namics onto a line. This leads to violation of all conservat
laws, and it is clear that the pressure-induced processe
the correlation and redistribution between different com
nents of velocity, probably conservative in the original equ
tion of motion, can lead to the dissipationlike effects
T(U,r ). We can see from the above definitions that, due
homogeneity of the turbulence,

i T1 i p1d5E
2`

`

T~U,r !P~U,r !dU50. ~42!

Comparing Eqs.~40! and ~41! with Eq. ~22! gives

2
1

2

]

]U
T~U,r !P~U,r !52

urms

L

]

]U
UP~U,r !

1~B021!E
2`

U ]P~y,r !

]r
dy

2A
U

r
P~U,r !. ~43!

Recalling thatB52B0.0 and A5(31B)/3.0, relations
~42! and~43! give an equation for the coefficientB.0. It can
be solved numerically to establish consistence with
above calculation leading toB'20. An interesting insight
into Eqs.~42! and~43! is obtained if we use the fact that th
deviations from scaling of a central part of the PDF a
small. This means that

P~U,r !5
1

r a FS U

r aD .

Substituting this into Eqs.~42! and ~43! gives
-

b-
n

-
n
of
-
-

f
o

e

2
1

2

]

]U
T~U,r !P~U,r !52

urms

L

]

]U
UP~U,r !

1
a~B11!U

r
P~U,r !

2
AU

r
P~U,r !.

Now we have to define the ‘‘representative exponent’’a
'jn /n with 0,n,3, which can be done only approx
mately. Choosinga5j1 , and recalling thatj1(B11)[A,
the last two terms cancel and

T~U,r !52
urms

L
U,

satisfying constraint~42!.
A much more interesting relation is obtained by substit

ing Eq.~36! into Eq.~43!, with the scale-invariant expressio
for Pe(U,r ). Taking into account thata(B11)5A, we
have

T~U,r !

2
5

2~B11!~123a!

15P~U,r !

]Pe~U,r !

]U
. ~44!

The plot ofT(U,r ) calculated from Eq.~39! using approxi-
mate relations~36! and ~37! is presented in Fig. 7 forr
'0.01. Outside the interval22,U/r a,3 – 4 the curve
saturates which might be an artifact of the exponential
ymptotics the approximate formulas~36! and~37!, valid only
whenU not too large. It is interesting that the curve is asy
metric, reflecting the asymmetry of the PDF. In the limitU
→0, expression~44! gives

T~U,r !'
4~B11!~3a21!

15

U

r 2a .

This relation takes into account that 3a.1. Choosinga
'(31B)/3B'23/60'0.383 gives

FIG. 7. Calculated conditional meanT(U,r )/2 using an approxi-
mate expression for PDF~36! and ~37!.
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T~U,r !'0.84
U

r 2a '
0.84A2

r 0.07

U

S2
, ~45!

whereA2'2 is the amplitude ofS2(r ).
Now we return to the estimate of parameterB. We saw

that settinga5j1 , though shedding some light on the stru
ture of expression~43!, does not allow us to estimate it. Th
problem is thatS150, and one cannot use it for the nond
mensionalization of the argument of the scale-invariant P
A different parametrizationa5j2/2, typically used for
analysis of experimental data, leads to cancellation of the
two terms if

j2

2
~B11!5

B13

3
,

giving B'40. With the exponenta'0.383, best character
izing the top of the PDFPe(U,r ), we haveB'12. This
simple calculation demonstrates the consistency of the m
for T(U) with the magnitude of the parameterB'20, de-
rived above.

Expression~43! can be modified using an identity@27#

i 1~U,r ![
]P~U,r !

]r
52

]

]U K ]U

]r
U L P~U,r !

[
]

]U
I 1~U,r !P~U,r !,

whereI 1(U,r ) is the conditional expectation value of]U/]r
for a fixed value of velocity differenceU. Equation ~43!
reads

]

]U
T~U,r !P~U,r !52

urms

L

]

]U
UP~U,r !1~B11!

3I 1~U,r !P~U,r !2A
U

r
P~U,r !.

It is easy to see that

1

2

]U

]r
5

u~r 1d!2u~d!2u~r !1u~0!

d
5ux~r !2ux~0!.

~46!

This expression shows that experimental and numerica
vestigations of conditional expectation value of veloci
derivative difference for a fixed value ofU is important,
since the combination

F ~B11!K ]U

]r
U L 2

B13

3

U

r GP~U,r ! ~47!

determines the structure of the probability density. Sin
P(U,r )5P(2U,2r ), we have, from Eq.~35!,

T~U,r !52T~2U,2r !.

LARGE-SCALE CORRECTIONS TO SCALING

To complete the comparison of the present work pred
tions with experimental data, let us discuss some con
.

st

el

n-

e

-
e-

quences of expression~26!. Experimental determination o
the inertial range is usually done by establishing the inter
where the third-order momentS3(r )}r , in accord with the
Kolmogorov relation. As one can see from Eq.~26!, this is
not so easy because of theO(rS2) subdominant contribution
giving

S3'20.8r 1O~r 1.7!,

where we setj2'0.7 andurms5L5E51. To make a quan-
titative comparison of this relation with the data, we have
restore physical dimensional units. Let us define

Sn~r !5Ansn[An~Er !1/3S r

L D jn2~n/3!

,

Relation~26! can be rewritten

Sn

sn
5An1

urms

~EL !1/3

n~n21!An21

~n1B!~jn212jn11! S r

L D jn212jn11

.

The high-Reynolds-number experiment@23# was con-
ducted in the atmospheric boundary layer on the tower a
m above the ground. The measuredurms'1.4 m/sec and the
mean dissipation rateE'0.03 m2/sec3. The measured root
mean-square streamwise velocity componenturms in the
wall-bounded flows is somewhat larger than that of the
locity components perpendicular to the direction of the flo
Since in relation~26! we are interested inurms corresponding
to the top of the inertial range, a good estimate
urms/(EL)1/3'1. TakingL'35 m andA2'2.0– 2.5 gives

2
S3

Er '0.82~0.0620.08!r 0.7

and

2
S5

s5
'2022r 0.75.

The experimentally observed@23# relation

S55A5~Er !5/3S r

L D j52~5/3!

'0.09r 1.53

is consistent with numerical values forE andL used above.
The third- and fifth-order moments, calculated from t
above relation, are presented on Fig. 8. The parameters
were: A5'20 andA4'22 @23#. The value of the integra
scaleL'35 m, used above, can be slightly overestimat
Choosing L'20– 30 m does not substantially modify th
above conclusions. This result is extremely important, si
it shows that without explicit accounting for the subdomina
O(r 0.7) component ofS3 , one cannot observe the Kolmog
orov relation except in very high-Reynolds-number flows.
also tells us that, in fact, the inertial range can be made m
broader and that scaling exponents can be established
accurately with the proper data processing. One can see
Fig. 8 that the fifth-order moment starts deviating from
asymptotic value earlier thanS3 . Expressions correspondin
to model~23! can be written easily,
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FIG. 8. Calculated normalized momentss35S3(r )/r ands55S5(r )/r 1.53.
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5A2n111

gA2n22~2n11!2n~2n21!

n1B

3S r

L D 31j2n222j2n11

.

As we see, in the limitr→0 the contribution from the sub
leading term in this case is much smaller. This means t
for a given Re, an investigation of the scaling exponentsjn
in the numerically created large-scale-driven turbulence
much easier.

DISCUSSION AND CONCLUSIONS

The theory developed in this work is based on equatio
including a simple model for the pressure and dissipat
terms. This model, though satisfying all basic symmetry co
straints, has not been rigorously derived from the Navi
Stokes equations. The merits of such work can be judged
comparison of theoretical predictions with experimental da
The calculated exponents and the amplitudes of the struc
functionsSn(r ) agree very well with available experimenta
data. The theory also predicts large-scale corrections to s
ing, thus allowing calculation ofSn up to the large-scale
cutoff L at which S2n11(r ) becomes very small. This pre
diction is nontrivial, and can serve as a rigorous test of
model. The scale where it occurs is an integral scale of
bulence, corresponding to the top of the inertial range. T
definition seems very plausible, since it corresponds to
length scale of the nonzero energy flux setup.

The most straightforward experimental test of this theo
can be performed in the following way. Assume that t
odd-order moments have the form

S2n115A2n11r j2n111B2n11r b2n11,

where the exponentsbn , reflecting the large-scale dynamic
have been evaluated above for the two cases of turbule
production. The log-log plotting of the functions
at,

is
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n-
r-
by

ta.
ure
l
cal-

he
ur-
is
he

ry
e

,
nce

F2n115B2n11r bn2b2n1152
S2n11

r j2n11
2An

will enable one to obtain direct information about the su
leading contributions to the moments and, as a result,
rectly assess the quality of the equations for the mome
Sn(r ). The knowledge ofbn will define universality classes
differing by the mechanisms of turbulence generation. A
cording to this work, the functionsF2n11 should demon-
strate the scaling behavior all the way up to the integral sc
L. If this is indeed so, the measurements are not too diffic

If turbulence is driven by the large-scale body force, t
subleading correction to the Kolmogorov relation forS3(r )
is an analyticO(r 3) function. This flow can be realized in
numerical experiments. In real-life situations this kind
forcing rarely exist. The appearance of theO(r 1.7) nonana-
lytic correction in the relation forS3(r ), derived from Eq.
~22!, can be easily explained in both cases of decaying
sheared turbulence considered above. The measuremen
jets and wakes are usually taken at the distancex from the
origin ~nozzles, bodies, etc.!, where turbulence is produced
Thus, as stated above, the proper model is that of deca
turbulence at the timeT5x/U after turbulence generation a
t50, whereU is the mean velocity at the crossectionx.
Then, assuming a close-to-self-similar decay, the correc
is

O„rS2t~r !…'rS2~r !Ft~T!'r 1.7,

where the functionF(t) describes the time-dependence
S2(r ,t) in decaying turbulence. In case of the shea
generated turbulence the correction is@18#

OS r
]V

]x
S2~r ! D'r 1.7.

We do not know how general this result is. According to t
present work, it cannot be universal. The theory make
direct connection to Landau’s remark about the role of t
large-scale fluctuations of turbulence production. We can
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answer the most important question about the universalit
the exponents; for this we need detailed and quantitative
formation on the production terms in the equations of m
tion. However, even if the exponents are universal or bel
to some broad universality classes, the probability den
function of velocity difference is not universal since the a
plitudes of the momentsSn(r ) depend on some of the fea
tures of the nonuniversal large-scale dynamics and the
tails of the single-point probability density.

The assumption about a Gaussian single-point PDF,
sponsible for the values of the amplitudes of the even-or
moments, was used here as a good approximation suffic
for a demonstration of the basic features of the theory. I
clear that the nonuniversality of the symmetric part of t
PDFPe(U,r ) is determined by deviations of the single-poi
PDF from the Gaussian. It is interesting that, according
the present work, even neglecting the nonuniversality
Pe(U,r ), the asymmetric partP0(U,r ), responsible for the
odd-order moments, is not universal. This is quite reason
since the very existence of the flux, reflected inP0(U,r ), is
the result of the large-scale dynamics.

The theory presented here is a departure from all prev
field-theoretical attempts to develop an infrared divergen
free turbulence theory, able to explain the anomalous sca
of the moments of velocity difference. It has always be
assumed that, due to Galilean invariance, the vertex cor
tions are equal to zero in the infrared limitk→0. The sup-
posed GI led to formulation of the Ward identities whic
were not too helpful. The low-order Kraichnan’s LHDIA
@28#, which in addition to the conservation laws correc
accounted for such basic symmetries of the problem as
dom Galilean invariance, led to the Kolmogorov ener
spectrum without any corrections. It is interesting that
same approximation, applied to Burgers turbulence, resu
in a k22 energy spectrum corresponding to strong shoc
Kraichman explained this nontrivial result in terms of t
phase decorrelation due to the interaction between com
nents of the velocity field, nonexistent in the Burgers dyna
ics, which effectively prevents the shock formation. Acco
ing to Ref.@28#, it is this decorrelation which is responsib
for the formation of the close-to-experimental data Kolmo
orov 5

3-energy spectrum. All attempts to preserve the G
ilean invariance of the theory of three-dimensional turb
lence led to the disappearance of the integral scaleL from
the problem and to the resulting inability of the theory
predict deviations from the Kolmogorov scaling. Referenc
@11#, @29#, and @16# all presented theories of Burgers turb
lence, showing that the Galilean invariance is not to be ta
for granted; only the low-order momentsSn<1}r n corre-
sponding touUu!urms can be described in this regime. Th
structure functionsSn}r with n.1 scale withurms, depend-
ing on the large-scale features of the flow. These wo
stated that Galilean invariance is not sacred, and depart
from it are responsible for the anomalous scaling of the hi
order moments observed in Burgers turbulence. The s
conclusion was derived in an earlier work@30# predicting

@u~x1r !2u~x!#E~x!E~x1r !}urms~ Ē!2~r /L !0.

This experimentally confirmed relation@31# explicitly in-
volves the GI breakingurms.
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The present work makes an additional step in this dir
tion: it assumes that, due to incompressibility, GI in thre
dimensional turbulence is broken for all, even small veloc
fluctuations. This means that the ‘‘normal scaling’’ does n
hold for all momentsn.21, which seems to agree wit
experimental data showing deviations from Kolmogor
scaling of all momentsSn . Free from the GI restrictions, th
vertex corrections are introduced in this paper from the v
beginning, resulting in the equation of motion for the pro
ability density of the velocity difference. This equation
based on some general symmetry properties of the sys
and satisfies all known realizability constraints.

The theory developed here is based on a few assumpti
First of all, it assumes the existence of a closed equation
longitudinal structure functionsSn(r ). This is a mere gener
alization of the Kolmogorov result for a particular case w
n53. Physical grounds for the equation forSn are based on
the fact that the Navier-Stokes nonlinearities tend to prod
two main effects: shock generation due to advection ter
which are balanced by the pressure contributions. An in
play between the two leads to creation of the vortical str
tures seen in the experimental data. The three-dimensi
nature of the structures is lost when one considers projec
of the entire dynamics onto a line. All we know is that th
shock production is effectively prevented by the press
terms, leading to an invalidation of the bifractal descripti
of the pure Burgers dynamics. We also know that the eq
tion of motions are invariant under transformationU→2U
andx→2x, and that the dynamic equation for theN-point
generation function must satisfy the general fusion r
transforming it, upon point merging, into the equation for t
(N21) function. These are the physical reasons respons
for all but one of the contributions to Eq.~20!.

As was mentioned above, except for theA term in Eq.
~20!, all others are more or less prescribed by the origi
equation of motion. However, without theA term, Eq.~20!
contradicts the exact relation~42!, and thus cannot be cor
rect. I have not been able to find an alternative descript
obeying generally the fusion rules and symmetries of
problem, and producing a solution satisfying Eq.~42!. For
example, one can add theO(Z2) contribution to the right
side of Eq.~19!, which does not contradict the basic symm
tries. However, it violates one of the principle constraints
the theoryS15^U&50, and thus cannot be correct. The su
cess of the Boldyrev theory, including this term, in descr
ing some of the regimes of Burgers turbulence@28#, is based
on the fact that, like Polyakov’s work, it describes only t
momentsSn with n,1, and the resultS150 can be achieved
using contributions coming from the non-scale-invaria
terms, which are beyond approximations of Refs.@11,29#.
The same happens in the theory of Ref.@16#, leading, in
accord with the bifractal picture, to a PDF consisting of tw
contributions responsible for the moments withn,1 andn
.1, respectively. In the present paper, treating all mome
Sn(r ) with n.0 on equal footing, we do not have the luxu
of satisfying the dynamical constraints using some contri
tions extraneous to the theory and, as a result, our choic
the allowed terms in the equations of motion is much m
narrow. One may also attempt to add
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h
Z2

rl
,

not violating the symmetry of Eq.~20!. This gives

jn5
n1h

n1B
.

However, sincej050, the constanth50.
Equation~22! for the PDF can be rewritten in the limit o

small r as

]P

]t
1U

]P

]r
1B0 E

2`

U ]P~y,r !

]r
dy5

P

t
, ~48!

wheret}r /U. The meaning of theA term can be understoo
from the shape of Eq.~48! if we take into consideration that
unlike in the one-dimensional case, the interaction with
transverse components of the velocity field produces ef
tive sources, and sinks or friction for the longitudinal corr
lations. Then Eq.~48! is the equation of motion taking thes
sinks and sources into account in the relaxation-time
proximation. In other words,t'r /U is simply the time
~eddy turnover time! required for the longitudinal structur
to substantially change its shape and size due to interac
with the transverse components. This characteristic ti
though plausible, is yet to be derived from the final ‘‘micr
scopic theory.’’ It is important that Eq.~48! is conservative,
so that, sincêU&50, S051. Thus the right side of Eq.~48!
describes both sinks and sources. This is consistent with
results of the present paper: in the small-scale limit,Sn
}r jn@r n/3'SnB for n,3, while Sn!SnB}r for all n.3.
Here SnB is the nth-order moment of velocity differenc
measured in the large-scale-driven Burgers turbulence.
can be seen directly from Eq.~48!: the PDF tail withU.0
grows, while the part withU,0 decreases, making th
Navier-Stokes PDFP(U,r ) much more symmetric than th
one governing the Burgers dynamics. This means that du
the interaction between different components of the velo
field, the weak structures (uUu,urms), generated by the 3D
Navier-Stokes dynamics, are much more intense than t
counterparts in the Burgers turbulence. At the same time,
to Kraichnan’s phase decorrelation, the strong structure
the Navier-Stokes turbulence are much weaker than
strong shocks, responsible for the high-order moments of
Burgers dynamics.

In a recent paper@32#, a modified one-dimensional Bur
gers equation

ut1uxu1aux E
2`

` u~x8!

x2x8
dx85 f 1nuxx ~49!

was considered. As in Ref.@12#, a d-function-correlated
Gaussian random force characterized by the spect
u f (k)u2}k21 was used. The large-scale dissipation was int
duced to avoid growth of the modeu(k50). It was shown
that addition of the nonlocal contribution is sufficient to pr
vent the shock formation and generation of the nontriv
e
c-
-

-

ns
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he
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to
y
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e
e

m
-

l

exponentsjnÞ1 for n.3. The possible relation of Eq.~49!
to the equations introduced in this paper will be discus
elsewhere.

The good agreement of the scaling exponents of the st
ture functions with experimental data derived in this pap
though gratifying, is not the most important outcome. T
cascade models, not related to the equations of motion,
give a quantitatively correctj2n . However, no model was
able to address the problem of the asymmetry of the pr
ability density functionP(U,r )ÞP(2U,r ) and, as a conse
quence, predict the scaling exponents and the amplitude
the odd-order structure functions. Only dynamic theo
based on the Navier-Stokes equations, invariant under tr
formationsu→2u andx→2x, can lead to the asymmetri
probability density and correct properties of the odd-ord
moments.

The present theory, though based on some physical c
siderations developed for the Burgers equation, is not a sm
perturbation around Burgers phenomenology: the coe
cientsB'20 andB@b'2 obtained in Ref.@11#. Moreover,
the relevant coefficientsB0, renormalizing advection contri
butions in Eq.~19!, is strongly negative, unlike paramete
b@0 in the theory of Burgers turbulence. This means t
the pressure and transverse terms, preventing formatio
strong shocks, are extremely important here. On the o
hand, the Burgers effects are not unimportant at all. To de
onstrate this, we can neglect the ‘‘original’’ Burgers terms
the equation of motion and derive the relation for the m
ments:

Sn5Antkn2
urms

L

An21

An
n~n21!

r kn2111

12
A

B8

,

where now

kn5
A

B8
n,

and A/B8,1. We see that without ‘‘small’’ Burgers term
the equation of motion gives normal scaling, and that is w
they are essential for a derivation of the anomalous sca
exponents. If all this is correct, one may say that the ano
lous scaling is the result of the dynamic interplay of t
Burgers-like tendency to create singularities~shocks! with
the ‘‘normalizing’’ action of the pressure terms and the i
compressibility constraints.

The equations developed here are based on the phen
enology relevant for the longitudinal structure functions, a
that is why we cannot say anything about shape and sca
of transverse structure functions. The main problem is t
the odd-order momentsS2n11

t 5^@va(x1r )2va(x)#2n11&
50, where vectorr is parallel andva is a component of the
velocity field perpendicular to thex axis. This means that the
PDF P(Dva ,r )5P(2Dva ,r ), and the equations governin
the probability density of transverse velocity differenc
must have different symmetry properties than Eqs.~20! and
~21!.

The most important feature of hydrodynamic turbulen
distinguishing it from equilibrium statistical mechanics, is
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constant energy flux in the wave-number space. It is
energy flux that makes the probability densityP(U,r ) asym-
metric, leading to the nonzero values of the odd-order lon
tudinal structure functions. It is not clear how the inform
tion about the energy flux is reflected in the transve
structure functions coming out from the corresponding sy
metric probability density. It is even unclear ifSn

t (r ) is a
dynamically relevant object. In the theory presented here,
transverse components of the velocity field simply serve a
‘‘bath,’’ introducing some renormalization and dephasi
into the energy-flux-carrying longitudinal dynamics. The a
gular dependence of the structure functions in thr
dimensional turbulence can be recovered using the mul
mensional equation for the two-point generating funct
with the pressure terms accounted for in the mean field
in

,

,

is

i-
-
e
-

e
a

-
-
i-

p-

proximation, similar to the one introduced in this paper. It
not clear if this can lead to the improved description of e
perimental data.
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